cho tg ABC duong thang d nam ngoai tg tu 3 dinh ABC va trong tam G ve AA',BB',CC',GG'cung vuong goc voi d. CM AA'+BB'+CC'=3GG'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1: Xét hình thang ABCD có : EF là đường TB=>EF=AB+CD/2
Ta có:DE+EF+FC=AD/2+AB+CD/2+BC/2=(AD+AB+CD+BC)/2=5
=>AB+BC+CD+DA=10
gọi M,N lần lượt là trung điểm của GC, AB.
M', N' lần lượt là hình chiếu của M và N trên d.
ta có G là trọng tâm của tam giác ABC
\(\Rightarrow GM=MC=NG\)
hình thang GG'C'C : \(\left\{{}\begin{matrix}GM=MC\\MM'\text{//}GG'\left(\perp d\right)\end{matrix}\right.\)
do đó MM' là dg trung bình của hình thang GG'C'C.
\(\Rightarrow2MM'=GG'+CC'\)(1)
tương tự, hình thang B'BAA' có: \(2NN'=BB'+AA'\)(2)
hình thang NN'M'N có: \(2GG'=NN'+MM'\)(3)
• từ (1),(2) và (3) suy ra : \(4GG'=CC'+GG'+BB'+AA'\)
\(\Leftrightarrow4GG'-GG'=CC'+BB'+AA'\\ \Leftrightarrow3GG'=CC'+BB'+AA'\left(đpcm\right)\)