Giải bất phương trình : $\left| \dfrac{{{x}^{2}}-5x+4}{{{x}^{2}}-4} \right|<1$
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: \(\Leftrightarrow20x^2-12x+15x+5< 10x\left(2x+1\right)-30\)
\(\Leftrightarrow20x^2+3x+5< 20x^2+10x-30\)
=>3x+5<10x-30
=>-7x<-35
hay x>5
b: \(\Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)>4x\left(1-3x\right)-15x\)
\(\Leftrightarrow20x-80-12x^2-6x>4x-12x^2-15x\)
=>14x-80>-11x
=>25x>80
hay x>16/5

a, ĐKXĐ : \(D=R\)
BPT \(\Leftrightarrow x^2+5x+4< 5\sqrt{x^2+5x+4+24}\)
Đặt \(x^2+5x+4=a\left(a\ge-\dfrac{9}{4}\right)\)
BPTTT : \(5\sqrt{a+24}>a\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a+24\ge0\\a< 0\end{matrix}\right.\\\left\{{}\begin{matrix}a\ge0\\25\left(a+24\right)>a^2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-24\le a< 0\\\left\{{}\begin{matrix}a^2-25a-600< 0\\a\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-24\le a< 0\\0\le a< 40\end{matrix}\right.\)
\(\Leftrightarrow-24\le a< 40\)
- Thay lại a vào ta được : \(\left\{{}\begin{matrix}x^2+5x-36< 0\\x^2+5x+28\ge0\end{matrix}\right.\)
\(\Leftrightarrow-9< x< 4\)
Vậy ....
b, ĐKXĐ : \(x>0\)
BĐT \(\Leftrightarrow2\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)< x+\dfrac{1}{4x}+1\)
- Đặt \(\sqrt{x}+\dfrac{1}{2\sqrt{x}}=a\left(a\ge\sqrt{2}\right)\)
\(\Leftrightarrow a^2=x+\dfrac{1}{4x}+1\)
BPTTT : \(2a\le a^2\)
\(\Leftrightarrow\left[{}\begin{matrix}a\le0\\a\ge2\end{matrix}\right.\)
\(\Leftrightarrow a\ge2\)
\(\Leftrightarrow a^2\ge4\)
- Thay a vào lại BPT ta được : \(x+\dfrac{1}{4x}-3\ge0\)
\(\Leftrightarrow4x^2-12x+1\ge0\)
\(\Leftrightarrow x=(0;\dfrac{3-2\sqrt{2}}{2}]\cup[\dfrac{3+2\sqrt{2}}{2};+\infty)\)
Vậy ...

a: =>2x^2+8x-3x-12<2x^2+2
=>5x<14
=>x<14/5
b: =>\(\dfrac{9x-3-\left(5x+1\right)\left(x-2\right)}{3\left(x-2\right)}-4>0\)
=>\(\dfrac{9x-3-5x^2+10x-x+2-12\left(x-2\right)}{3\left(x-2\right)}>0\)
=>\(\dfrac{-5x^2+18x-1-12x+24}{3\left(x-2\right)}>0\)
=>\(\dfrac{-5x^2+6x+23}{x-2}>0\)
TH1: x-2>0 và -5x^2+6x+23>0
=>x>2 và \(\dfrac{3-2\sqrt{31}}{5}< x< \dfrac{3+2\sqrt{31}}{5}\)
=>\(2< x< \dfrac{3+2\sqrt{31}}{5}\)
TH2: x-2<0 và -5x^2+6x+23<0
=>x<2 và \(\left[{}\begin{matrix}x< \dfrac{3-2\sqrt{31}}{5}\\x>\dfrac{3+2\sqrt{31}}{5}\end{matrix}\right.\)
=>\(x< \dfrac{3-2\sqrt{31}}{5}\)

a, \(\left|5x-4\right|\ge6\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-4\ge6\\5x-4\le-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge2\\x\le-\dfrac{2}{5}\end{matrix}\right.\)
a) <=> (5x - 2)2 ≥ 62 <=> (5x – 4)2 – 62 ≥ 0
<=> (5x - 4 + 6)(5x - 4 - 6) ≥ 0 <=> (5x + 2)(5x - 10) ≥ 0
Bảng xét dấu:
Từ bảng xét dấu cho tập nghiệm của bất phương trình:
T = ∪ [2; +∞).
b) <=>
<=>
<=>
<=>
Tập nghiệm của bất phương trình T = (-∞; - 5) ∪ (- 1; 1) ∪ (1; +∞).

ĐKXĐ:\(\left\{{}\begin{matrix}x\ne1\\x\ne2\\x\ne7\end{matrix}\right.\)
\(\dfrac{2\left(x-4\right)}{\left(x-1\right)\left(x-7\right)}\ge\dfrac{1}{x-2}\\ \Leftrightarrow\dfrac{2x-8}{x^2-8x+7}\ge\dfrac{1}{x-2}\\ \Leftrightarrow\left(2x-8\right)\left(x-2\right)\ge x^2-8x+7\)
\(\Leftrightarrow2x^2-12x+16\ge x^2-8x+7\\ \Leftrightarrow x^2-4x+9\ge0\left(luôn.đúng\right)\)

a: \(\Leftrightarrow3x^2+x>3\left(x^2-4\right)\)
=>x>-12
b: \(\Leftrightarrow5x^2-x+20x-4>5x^2+16x+2\)
=>19x-4>16x+2
=>3x>6
hay x>2
X*X - 4 khác 0 suy ra X khác +- 2
Có |a| < 1
-> -1 < a < 1
Suy ra : X*X - 5X + 4 > 4- X*X
và X*X - 5X + 4 < X*X - 4
Suy ra: 2X*X - 5X > 0
và 8 < 5X
Suy ra: X(2X-5) > 0 và X > 8/5
Suy ra: 2X-5 > 0 và X > 8/5
Suy ra: X > 5/2 và X > 8/5
Vậy X > 5/2