Tính \(\lim\limits_{x\rightarrow0}\dfrac{\sin x\sin2x...\sin nx}{x^n}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{sinx}{cosx}-sinx}{sin^3x}=\lim\limits_{x\rightarrow0}\dfrac{1-cosx}{cosx.sin^2x}=\lim\limits_{x\rightarrow0}\dfrac{2sin^2\dfrac{x}{2}}{4cosx.cos^2\dfrac{x}{2}sin^2\dfrac{x}{2}}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{1}{2cosx.cos^2\dfrac{x}{2}}=\dfrac{1}{2}\)
\(=\dfrac{1}{3}\lim\limits_{x\rightarrow0}\dfrac{sinx}{x}-\lim\limits_{x\rightarrow0}\dfrac{\sqrt{3}cos5x}{3x}=\dfrac{1}{3}-\lim\limits_{x\rightarrow0}\dfrac{\sqrt{3}cos5x}{3x}\)
Xét:
\(\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt{3}cos5x}{3x}=\dfrac{\sqrt{3}}{0}=+\infty\)
\(\lim\limits_{x\rightarrow0^-}\dfrac{-\sqrt{3}cos5x}{-3x}=\dfrac{-\sqrt{3}}{0}=-\infty\)
\(\Rightarrow\lim\limits_{x\rightarrow0}\dfrac{\sqrt{3}cos5x}{3x}\) ko tồn tại nên giới hạn đã cho không tồn tại
Tui nghĩ cái này L'Hospital chứ giải thông thường là ko ổn :)
\(M=\lim\limits_{x\rightarrow0}\dfrac{\left(1+4x\right)^{\dfrac{1}{2}}-\left(1+6x\right)^{\dfrac{1}{3}}}{1-\cos3x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{2}\left(1+4x\right)^{-\dfrac{1}{2}}.4-\dfrac{1}{3}\left(1+6x\right)^{-\dfrac{2}{3}}.6}{3.\sin3x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{-\dfrac{1}{4}.4\left(1+4x\right)^{-\dfrac{3}{2}}.4+\dfrac{2}{9}.6.6\left(1+6x\right)^{-\dfrac{5}{3}}}{3.3.\cos3x}\)
Giờ thay x vô là được
\(N=\lim\limits_{x\rightarrow0}\dfrac{\left(1+ax\right)^{\dfrac{1}{m}}-\left(1+bx\right)^{\dfrac{1}{n}}}{\left(1+x\right)^{\dfrac{1}{2}}-1}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{m}.\left(1+ax\right)^{\dfrac{1}{m}-1}.a-\dfrac{1}{n}\left(1+bx\right)^{\dfrac{1}{n}-1}.b}{\dfrac{1}{2}\left(1+x\right)^{-\dfrac{1}{2}}}=\dfrac{\dfrac{a}{m}-\dfrac{b}{n}}{\dfrac{1}{2}}\)
\(V=\lim\limits_{x\rightarrow0}\dfrac{\left(1+mx\right)^n-\left(1+nx\right)^m}{\left(1+2x\right)^{\dfrac{1}{2}}-\left(1+3x\right)^{\dfrac{1}{3}}}=\lim\limits_{x\rightarrow0}\dfrac{n\left(1+mx\right)^{n-1}.m-m\left(1+nx\right)^{m-1}.n}{\dfrac{1}{2}\left(1+2x\right)^{-\dfrac{1}{2}}.2-\dfrac{1}{3}\left(1+3x\right)^{-\dfrac{2}{3}}.3}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{n\left(n-1\right)\left(1+mx\right)^{n-2}.m-m\left(m-1\right)\left(1+nx\right)^{m-2}.n}{-\dfrac{1}{2}\left(1+2x\right)^{-\dfrac{3}{2}}.2+\dfrac{2}{9}.3.3\left(1+3x\right)^{-\dfrac{5}{3}}}=....\left(thay-x-vo-la-duoc\right)\)