Cho \(\Delta ABC\) có \(AB=12cm\) ; \(AC=18cm\);\(AD\) là tia phân giác của \(\widehat{A}\) ; \(BH\)vuông góc với \(AD\) . Gọi \(M\)là trung điểm của \(BC\) Khi đó độ dài của \(HM\)là :..... \(cm\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAHB vuông tại H và ΔADH vuông tại D có
\(\widehat{DAH}\) chung
Do đó: ΔAHB\(\sim\)ΔADH(g-g)
Xin lỗi mấy bạn . Mình bị thiếu chỗ (cho tam giác ABC vuông tại A)
a) Xét ΔABK và ΔCBA có:
+ góc AKB=góc CAB=90 độ
+ góc ABK chung
=>ΔABK~ΔCBA (g-g)
b) Xét ΔAKB và ΔCKA có:
+ góc AKB=góc CKA=90 độ
+ góc KAB=góc KCA (cùng phụ với góc B)
=> ΔAKB~ΔCKA (g-g)
=> AK/ KC=KB / AK
=> AK^2=KB. KC
G B A P N M C
Ta lần lượt có:
- Trong \(\Delta ABC\)vuông tại A, suy ra:
\(BC^2=AB^2+AC^2=12^2+16^2=400\Leftrightarrow BC=20cm.\)
Ta có:
\(GA=\frac{2}{3}AM=\frac{2}{3}.\frac{1}{2}BC=\frac{1}{3}.20=\frac{20}{3}cm.\)
- Trong \(\Delta ABN\)vuông tại A, suy ra:
\(BN^2=AB^2+AN^2=12^2+8^2=208\Leftrightarrow BN=\sqrt{208}\left(cm\right)\)
Khi đó:
\(GB=\frac{2}{3}BN=\frac{2}{3}\sqrt{208}=\frac{2\sqrt{208}}{3}=\frac{8}{3}\sqrt{13}\left(cm\right)\)
- Trong \(\Delta ACP\)vuông tại A, suy ra:
\(CP^2=AC^2+AP^2=16^2+6^2=292\Leftrightarrow CP=\sqrt{292}\left(cm\right)\)
Khi đó:
\(GC=\frac{2}{3}CP=\frac{2}{3}\sqrt{292}=\frac{2\sqrt{292}}{3}=\frac{4}{3}\sqrt{73}cm.\)
Suy ra:
\(GA+GB+GC=\frac{20}{3}+\frac{8}{3}\sqrt{13}+\frac{4}{3}\sqrt{73}=\frac{4}{3}\left(5+2\sqrt{13}+\sqrt{73}\right)\left(cm\right)\)
Có AB=12cm , AN=8cm => \(\frac{{AN}}{{AB}} = \frac{8}{{12}} = \frac{2}{3}\)
AC=15cm, AM=10cm => \(\frac{{AM}}{{AC}} = \frac{{10}}{{15}} = \frac{2}{3}\)
=> \(\frac{{AN}}{{AB}} = \frac{{AM}}{{AC}}\)
- Xét hai tam giác ABC và tam giác ANM, có
\(\frac{{AN}}{{AB}} = \frac{{AM}}{{AC}}\), góc A chung
=> ΔABC ∽ ΔANM' (c.g.c)
Yosh~
Thank Dung