K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

Yosh~

14441147_208897666196724_1497669636132935528_n.jpg?oh=6aa8a5682312e4ea3f7a37934e08ab13&oe=587776AC

2 tháng 10 2016

Thank Dung

16 tháng 4 2021

Ý cuối nhầm không thế ạ?undefined

a) Xét ΔAHB vuông tại H và ΔADH vuông tại D có 

\(\widehat{DAH}\) chung

Do đó: ΔAHB\(\sim\)ΔADH(g-g)

 

7 tháng 5 2021

Xin lỗi mấy bạn . Mình bị thiếu chỗ (cho tam giác ABC vuông tại A)

7 tháng 5 2021

Giúp mình với 

12 tháng 4 2021

 

a) Xét ΔABK và ΔCBA có:

+ góc AKB=góc CAB=90 độ

+ góc ABK chung

=>ΔABK~ΔCBA (g-g)

b) Xét ΔAKB và ΔCKA có:

+ góc AKB=góc CKA=90 độ

+ góc KAB=góc KCA (cùng phụ với góc B)

=> ΔAKB~ΔCKA (g-g)

=> AK/ KC=KB / AK

=> AK^2=KB. KC

 

12 tháng 4 2021

bc=20 bn nhá

 

4 tháng 3 2019

xét tam giác abc và tam giác def có

ab/df=6/12=1/2

ac/ef=9/18=1/2

bc/de=12/24=1/2

=>tam giác abc đồng dạng vs tam giác dfe (ccc)

27 tháng 6 2019

G B A P N M C

Ta lần lượt có:

  • Trong \(\Delta ABC\)vuông tại A, suy ra:

                   \(BC^2=AB^2+AC^2=12^2+16^2=400\Leftrightarrow BC=20cm.\)

Ta có:

\(GA=\frac{2}{3}AM=\frac{2}{3}.\frac{1}{2}BC=\frac{1}{3}.20=\frac{20}{3}cm.\)

  • Trong \(\Delta ABN\)vuông tại A, suy ra:

                \(BN^2=AB^2+AN^2=12^2+8^2=208\Leftrightarrow BN=\sqrt{208}\left(cm\right)\)

Khi đó:

\(GB=\frac{2}{3}BN=\frac{2}{3}\sqrt{208}=\frac{2\sqrt{208}}{3}=\frac{8}{3}\sqrt{13}\left(cm\right)\)

  • Trong \(\Delta ACP\)vuông tại A, suy ra:

                 \(CP^2=AC^2+AP^2=16^2+6^2=292\Leftrightarrow CP=\sqrt{292}\left(cm\right)\)

Khi đó:

\(GC=\frac{2}{3}CP=\frac{2}{3}\sqrt{292}=\frac{2\sqrt{292}}{3}=\frac{4}{3}\sqrt{73}cm.\)

Suy ra:

\(GA+GB+GC=\frac{20}{3}+\frac{8}{3}\sqrt{13}+\frac{4}{3}\sqrt{73}=\frac{4}{3}\left(5+2\sqrt{13}+\sqrt{73}\right)\left(cm\right)\)

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

Có  AB=12cm , AN=8cm => \(\frac{{AN}}{{AB}} = \frac{8}{{12}} = \frac{2}{3}\)

AC=15cm,  AM=10cm => \(\frac{{AM}}{{AC}} = \frac{{10}}{{15}} = \frac{2}{3}\)

=> \(\frac{{AN}}{{AB}} = \frac{{AM}}{{AC}}\)

- Xét hai tam giác ABC và tam giác ANM, có

\(\frac{{AN}}{{AB}} = \frac{{AM}}{{AC}}\), góc A chung

=> ΔABC ∽ ΔANM' (c.g.c)