\(\left(x-\frac{1}{2}\right)^4=\left(x-\frac{1}{2}\right)^x\)
giúp mk bài tìm x ngày vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có: \(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.....\frac{30}{62}.\frac{31}{64}=2^x\)
\(\Leftrightarrow\frac{1.2.3.....30.31}{2.2.2.3.2.4.....2.31.2.32}=2^x\)
\(\Leftrightarrow\frac{1}{2^{31}.2^5}=2^x\)
\(\Leftrightarrow\frac{1}{2^{36}}=2^x\)
\(\Rightarrow x=-36\)
a.
\(\left(x+\frac{1}{2}\right)\times\left(x-\frac{3}{4}\right)=0\)
TH1:
\(x+\frac{1}{2}=0\)
\(x=-\frac{1}{2}\)
TH2:
\(x-\frac{3}{4}=0\)
\(x=\frac{3}{4}\)
Vậy \(x=-\frac{1}{2}\) hoặc \(x=\frac{3}{4}\)
b.
\(\left(\frac{1}{2}x-3\right)\times\left(\frac{2}{3}x+\frac{1}{2}\right)=0\)
TH1:
\(\frac{1}{2}x-3=0\)
\(\frac{1}{2}x=3\)
\(x=3\div\frac{1}{2}\)
\(x=3\times2\)
\(x=6\)
TH2:
\(\frac{2}{3}x+\frac{1}{2}=0\)
\(\frac{2}{3}x=-\frac{1}{2}\)
\(x=-\frac{1}{2}\div\frac{2}{3}\)
\(x=-\frac{1}{2}\times\frac{3}{2}\)
\(x=-\frac{3}{4}\)
Vậy \(x=6\) hoặc \(x=-\frac{3}{4}\)
c.
\(\frac{2}{3}-\frac{1}{3}\times\left(x-\frac{3}{2}\right)-\frac{1}{2}\times\left(2x+1\right)=5\)
\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
\(\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5-\frac{2}{3}\)
\(-\frac{4}{3}x=\frac{13}{3}\)
\(x=\frac{13}{3}\div\left(-\frac{4}{3}\right)\)
\(x=\frac{13}{3}\times\left(-\frac{3}{4}\right)\)
\(x=-\frac{13}{4}\)
d.
\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)
\(4x-x-\frac{1}{2}=2x-\frac{1}{2}+5\)
\(4x-x-2x=\frac{1}{2}-\frac{1}{2}+5\)
\(x=5\)
a) \(\frac{2}{3}-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5\)\(5\)
=> \(\frac{2}{3}-\left(\frac{1}{3}x-\frac{1}{2}\right)-\left(x+\frac{1}{2}\right)=5\)
=>\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
=>\(\left(\frac{2}{3}+\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5\)
=>\(\frac{2}{3}-\frac{4}{3}x=5\)
=>\(\frac{4}{3}x=\frac{2}{3}-5=-\frac{13}{3}\)
=>\(x=-\frac{13}{3}:\frac{4}{3}=-\frac{13}{4}\)
b)\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)
=>\(4x-x-\frac{1}{2}=2x-\left(-\frac{9}{2}\right)\)
=> \(3x-\frac{1}{2}=2x-\left(-\frac{9}{2}\right)\)
=>\(x=-\left(-\frac{9}{2}\right)+\frac{1}{2}=5\)
\(\Leftrightarrow2.\left(\frac{-1}{2}\right).\left(\frac{2}{3}\right)^2-3\left(-\frac{1}{3}\right)^2.\frac{2}{9}:x=3.\left(-\frac{1}{2}\right)-\frac{2}{3}\)
\(\Leftrightarrow-\frac{4}{9}-\frac{1}{3}.\frac{2}{9}:x=-\frac{3}{2}-\frac{2}{3}\)
\(\Leftrightarrow-\frac{4}{6}-\frac{2}{27}:x=-\frac{13}{6}\)
\(\Leftrightarrow\frac{2}{27}:x=-\frac{4}{9}:\frac{-13}{6}\)
\(\Leftrightarrow\frac{2}{27}:x=\frac{31}{18}\)
\(\Leftrightarrow x=\frac{2}{27}:\frac{31}{18}\)
\(\Rightarrow x=\frac{4}{93}\)
Vậy \(x=\frac{4}{93}\)
\(A=\left(\sqrt{x}+2\right):\left(\frac{x+8}{x\sqrt{x}+8}+\frac{\sqrt{x}}{x-2\sqrt{x}+4}-\frac{1}{2+\sqrt{x}}\right)\)
\(=\left(\sqrt{x}+2\right):\left(\frac{x+8+\sqrt{x}\left(\sqrt{x}+2\right)-\left(x-2\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)
\(=\left(\sqrt{x}+2\right):\left(\frac{x+8+x+2\sqrt{x}-x+2\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)
\(=\left(\sqrt{x}+2\right):\left(\frac{x+4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)
\(=\left(\sqrt{x}+2\right):\left[\frac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right]\)
\(=\left(\sqrt{x}+2\right):\frac{\sqrt{x}+2}{x-2\sqrt{x}+4}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}{\sqrt{x}+2}\)
\(=x-2\sqrt{x}+4\)
=.= hok tốt!!
PT cho tđuong với: (x^2 +9). (x^2 + 9x) = 22 (x-1)^2
Đặt t = [x^2 + 9 + x^2 + 9x]/2 hay t= x^2 + (9x + 9)/2.
Khi đó: x^2 + 9 = t - 9(x-1)/2
x^2 + 9x = t + 9(x-1)/2
PT cho trở thành: [t - 9(x-1)/2]. [t + 9(x-1)/2] = 22(x-1)^2
<=> t^2 -(81/4)(x-1)^2 = 22(x-1)^2
<=> t^2 = (169/4)(x-1)^2
<=> t = 13/2. (x-1) hoặc t= -13/2. (x-1)
<=> 2t =13x -13 hoặc 2t =-13x + 13
hay 2x^2 + 9x+ 9 =13x -13 hoặc 2x^2 + 9x +9 = -13x +13
hay 2x^2 - 4x +22 =0 hoặc 2x^2 + 22x - 4 =0
PT bậc hai thứ nhất vô nghiệm, PT bậc hai thứ hai cho ta hai nghiệm là:
x= (-11 +căn(129))/2 , x= (-11 - căn(129))/2.
cách 2:đặt x-1=k
pt trở thành (k+1)(k2+2k+10)(k+10)=22k2
<=>(k2+2k+10)(k2+11k+10)=22k2
tự làm tiếp
câu a) sáng giải
b) \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}=\frac{4^2}{2}=8>4\) vô nghiệm
a) ĐK: \(x,y\ne-1\)
\(\hept{\begin{cases}x^2+y^2+x+y=\left(x+1\right)\left(y+1\right)\left(1\right)\\\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2=1\left(2\right)\end{cases}}\)
(1) \(\Leftrightarrow\)\(\frac{x^2+x}{\left(x+1\right)\left(y+1\right)}+\frac{y^2+y}{\left(x+1\right)\left(y+1\right)}=1\)
\(\Leftrightarrow\)\(\frac{x\left(x+1\right)}{\left(x+1\right)\left(y+1\right)}+\frac{y\left(y+1\right)}{\left(x+1\right)\left(y+1\right)}=1\)
\(\Leftrightarrow\)\(\frac{x}{y+1}+\frac{y}{x+1}=1\) (3)
(2) \(\Leftrightarrow\)\(\left(\frac{x}{y+1}+\frac{y}{x+1}\right)^2-\frac{2xy}{\left(x+1\right)\left(y+1\right)}=1\)
\(\Leftrightarrow\)\(2xy=\left(x+1\right)\left(y+1\right)\)
Lại có: \(\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2\ge2\sqrt{\left(\frac{xy}{\left(x+1\right)\left(y+1\right)}\right)^2}=2\sqrt{\frac{1}{4}}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{x}{y+1}=\frac{y}{x+1}\)
\(\Rightarrow\)\(\hept{\begin{cases}\frac{2x}{y+1}=1\\2\left(\frac{x}{y+1}\right)^2=1\end{cases}\Leftrightarrow\left(\frac{x}{y+1}\right)^2-\frac{x}{y+1}=0\Leftrightarrow\frac{x}{y+1}\left(\frac{x}{y+1}-1\right)=0}\)
\(\Rightarrow\)\(\orbr{\begin{cases}\frac{x}{y+1}=0\\\frac{x}{y+1}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0;y=1\\x=y+1\end{cases}\Leftrightarrow}x=y+1}\)
Thay x=y+1 vào (3) ta được: \(\frac{y}{x+1}=0\)\(\Leftrightarrow\)\(y=0\)\(\Rightarrow\)\(x=1\) ( tương tự với y ta cũng được x=0;y=1 )
tập nghiệm của pt \(\left(x,y\right)=\left\{\left(0;1\right),\left(1;0\right)\right\}\)
b) ĐK: \(x,y\ne0\) còn cách khác là dùng cosi nhé, VD: \(\hept{\begin{cases}x+\frac{1}{x}+y+\frac{1}{y}=4\left(1\right)\\\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{y}\right)^2=4\left(2\right)\end{cases}}\)
lấy (1) + (2) và cộng 2 vào 2 vế của pt mới ta được:
\(10=a^2+1+b^2+1+\left(a+b\right)\ge2\sqrt{a^2}+2\sqrt{a^2}+4=12\)
\(\Rightarrow\)\(10\ge12\) (vô lí) => hpt vô nghiệm
phá ngoặc tính BT , nên kết quả sẽ ko ra con số nhận định !!! tui thử thui nha bà !
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|y-5\right|+\left|x+\frac{1}{4}\right|=\frac{1}{4}\)
\(x+\frac{1}{2}+x+\frac{1}{3}+y-5+x+\frac{1}{4}=\frac{1}{4}\)
\(3x+y-\frac{47}{12}=\frac{1}{4}\)
\(3x+y=\frac{25}{6}\)
\(3x=\frac{25}{6}-y\)
\(x=\frac{25-25y}{18}\)
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|y-5\right|+\left|x+\frac{1}{4}\right|=\frac{1}{4}\)
\(x+\frac{1}{2}+x+\frac{1}{3}+y-5+x+\frac{1}{4}=\frac{1}{4}\)
\(3x+y-\frac{47}{12}=\frac{1}{4}\)
\(3x+y=\frac{25}{6}\)
\(y=\frac{25}{6}-3x\)
Vậy \(x=\frac{25-25y}{18}\)
\(y=\frac{25}{6}-3x\)
Ta có:
\(|x+\frac{1}{2}|\ge x+\frac{1}{2}\forall x;|x+\frac{1}{3}|\ge x+\frac{1}{3}\forall x;|y-5|\ge y-5\forall y;|x+\frac{1}{4}|\ge x+\frac{1}{4}\forall x\)
\(\Rightarrow|x+\frac{1}{2}|+|x+\frac{1}{3}|+|y-5|+|x+\frac{1}{4}|\ge x+\frac{1}{2}+x+\frac{1}{3}+y-5+x+\frac{1}{4}\)
Mà \(|x+\frac{1}{2}|+|x+\frac{1}{3}|+|y-5|+|x+\frac{1}{4}|=\frac{1}{4}\)
\(\Rightarrow\frac{1}{4}\ge x+\frac{1}{2}+x+\frac{1}{3}+y-5+x+\frac{1}{4}\)
\(\Rightarrow\frac{1}{4}\ge3x+y-\frac{47}{12}\)
\(\Rightarrow3x+y\le\frac{25}{6}\)
\(\Rightarrow x\le\frac{\frac{25}{6}-y}{3}\)
Thay vào tính y
\(\left(x-\frac{1}{2}\right)^4=\left(x-\frac{1}{2}\right)^x\)
\(\Rightarrow x=4\)
tíc mình nha