cho x,y khác 0 thỏa mãn (x+y)5-x5-y5=0
Cm x+y=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x^5+y^5+z^5=(x^2+y^2+z^2)(x^3+y^3+z^3)-[x^2(y^3+z^3)+y^2(x^3+z^3)+z^2(x^3+y^3)]$
Mà:
$x^3+y^3+z^3=(x+y)^3-3xy(x+y)+z^3$
$=(-z)^3-3xy(-z)+z^3=3xyz$
Và:
\(x^2(y^3+z^3)+y^2(x^3+z^3)+z^2(x^3+y^3)\)
\(=x^2y^2(x+y)+y^2z^2(y+z)+z^2x^2(z+x)=-x^2y^2z-y^2z^2x-x^2y^2z\)
\(=-xyz(xy+yz+xz)=-xyz[\frac{(x+y+z)^2-(x^2+y^2+z^2)}{2}]=\frac{xyz(x^2+y^2+z^2)}{2}\)
Do đó: \(x^5+y^5+z^5=3xyz(x^2+y^2+z^2)-\frac{xyz(x^2+y^2+z^2)}{2}=\frac{5xyz(x^2+y^2+z^2)}{2}\)
\(\Rightarrow 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)\)
Ta có đpcm.
(x+y)5 =x5+y5 = (x+y)(x4 +....+y4)
=>(x+y) [(x+y)4-(x4+...+y4)] =0 vì [....] >0
=> x+y =0
(x+y)5-x5-y5=0
=>x5+y5+5x4y+10x3y2+10x2y3+5xy4-x5=0
=>5x4y+10x3y2+10x2y3+5xy4=0
=>5xy(x3+y3+2x2y+2xy2)=0
=>x3+y2+2x2y+2xy2=0
=>(x+y)(x2-xy+y2)+2xy(x+y)=0
=>(x+y)(x2-xy+y2+2xy)=0
=>(x+y)(x2+xy+y2)=0
=>x+y=0 hoặc x2+y2+xy=0
Vậy x+y=0(đpcm)