Tìm x thỏa mãn điều kiện :
\(\sqrt{4x^2-9}=2\sqrt{2x+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=\(\dfrac{\sqrt{2}.a}{\sqrt{\left(a^2+\left(b+c\right)^2\right)\left(1+1\right)}}+\dfrac{\sqrt{2}.b}{\sqrt{\left(b^2+\left(a+c\right)^2\right)\left(1+1\right)}}+\dfrac{\sqrt{2}.c}{\sqrt{\left(c^2+\left(b+a\right)^2\right)\left(1+1\right)}}\)>=\(\dfrac{\sqrt{2}.a}{\sqrt{\left(a+b+c\right)^2}}+\dfrac{\sqrt{2}.b}{\sqrt{\left(a+b+c\right)^2}}+\dfrac{\sqrt{2}.c}{\sqrt{\left(a+b+c\right)^2}}\)>=\(\sqrt{2}\)
Đề gốc là \(P=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\)
\(\frac{P}{4}=\frac{x}{2.2\sqrt{y}}+\frac{y}{2.2\sqrt{z}}+\frac{z}{2.2\sqrt{x}}\)
Áp dụng BĐT Côsi:
\(2.2.\sqrt{x}\le x+2^2=x+4\)
\(\Rightarrow\frac{P}{4}\ge\frac{x}{y+4}+\frac{y}{z+4}+\frac{z}{x+4}=\frac{x^2}{xy+4x}+\frac{y^2}{yz+4y}+\frac{z^2}{zx+4z}\)
\(\ge\frac{\left(x+y+z\right)^2}{xy+yz+zx+4\left(x+y+z\right)}\ge\frac{\left(x+y+z\right)^2}{\frac{1}{3}\left(x+y+z\right)^2+4\left(x+y+z\right)}=\frac{3\left(x+y+z\right)}{\left(x+y+z\right)+12}\)
\(=3-\frac{36}{x+y+z+12}\ge3-\frac{36}{12+12}=\frac{3}{2}\)
\(\Rightarrow P\ge6\)
Dấu bằng xảy ra khi \(x=y=z=4\)
đơn giản
ĐKXĐ x>=-\(\frac{-3}{2}\)
Bình phương
4x2-9=4(2x+3)
4x2-9-8x-12=0
4x2-8x-20=0
\(x=1-\sqrt{6}\)hoặc\(x=1+\sqrt{6}\)