K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2016

A=3+32+33+...+3100

3A=9+33+34+....+3100+3101

Ta có  :                 3A

                           -

                               A

                         __________

                              2A=3101-3

Theo đề bài , ta có:   2A+3=3n

=> n=101

nhé

1 tháng 10 2016

A = 3 2 + 3 + 4 .... + 100

A = 32550

n =    35100 + 1

n = 35001 : 3 

n =  1 / 3  của 35001

nhé !

5 tháng 11 2021

\(\Leftrightarrow3B=3^2+3^3+...+3^{101}\\ \Leftrightarrow3B-B=3^{101}-3\\ \Leftrightarrow2B=3^{101}-3\\ \Leftrightarrow2B+3=3^{101}=3^n\\ \Leftrightarrow n=101\)

5 tháng 11 2021

cảm ơn cậu nhìu lémyeu

 

24 tháng 12 2021

\(a,A=3+3^2+3^3+3^4+...+3^{100}\\ 3A=3^2+3^3+3^4+3^5+3^{101}\\ 3A-A=2A=3^{101}-3\\ \Rightarrow2A+3=3^{101}=3^{4.25+1}\\ \Rightarrow n=25\)

 

1 tháng 11 2023

\(B=3^1+3^2+3^3+...+3^{100}\\3B=3^2+3^3+3^4+...+3^{101}\\3B-B=(3^2+3^3+3^4+...+3^{101})-(3^1+3^2+3^3+...+3^{100})\\2B=3^{101}-3\\\Rightarrow 2B+3=3^{101}\)

Mặt khác: \(2B+3=3^n\)

\(\Rightarrow 3^n=3^{101}\\\Rightarrow n=101(tm)\)

Vậy n = 101.

1 tháng 11 2023

cảm ơn bạn nha :))

3 tháng 3 2020

a, n - 2 ⋮ n + 1

=> n + 1 - 3 ⋮ n + 1

=> 3 ⋮ n + 1

=> n + 1 thuộc Ư(3)

=> n + 1 thuộc {-1; 1; -3; 3}

=> n thuộc {-2; 0; -4; 2}

b, 2n - 3 ⋮ n - 1

=> 2n - 2 - 1 ⋮ n - 1

=> 2(n - 1) - 1 ⋮ n - 1

=> 1 ⋮ n - 1

=> n - 1 thuộc {-1; 1}

=> n thuộc {0; 2}

c, 3n + 5 ⋮ 2n - 1

=> 6n + 10 ⋮ 2n - 1

=> 6n - 3 + 13 ⋮ 2n - 1

=> 3(2n - 1) + 13 ⋮ 2n - 1

=> 13 ⋮ 2n - 1

=> 2n - 1 thuộc Ư(13)

=> 2n - 1 thuộc {-1; 1; -13; 13}

=> 2n thuộc {0; 2; -12; 14}

=> n thuộc {0; 1; -6; 7}

20 tháng 6 2018

\(2n+3\)và \(3n+4\)

Gọi d là ước chung lớn nhất của \(2n+3\)và \(3n+4\)

Ta có :

\(2n+3⋮d=\left(2n+3\right)\cdot3⋮d=\left(6n+9\right)⋮d\)

\(3n+4⋮d=\left(3n+4\right)\cdot2⋮d=\left(6n+8\right)⋮d\)

\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)

\(\Rightarrow6n+9-6n-8⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\)Vậy \(2n+3\)và \(3n+4\)là hai số nguyên tố cùng nhau

20 tháng 6 2018

Gọi ƯCLN ( 2n+3;3n+4 ) là d

\(\Rightarrow\orbr{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}3.\left(2n+3\right)⋮d\\2.\left(3n+4\right)⋮d\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}}\)\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\in\text{Ư}\left(1\right)=\pm1\)

\(\Rightarrow\)2n+3 và 3n+4 là 2 số nguyên tố cùng nhau

                                                đpcm

20 tháng 7 2021

A=3+32+33+...+3100

3A=32+33+...+3101

3A-A=(32+33+...+3101)-(3+32+33+...+3100)

2A=3101-3

2A+3=3101

20 tháng 7 2021

\(A=3+3^2+3^3+...+3^{100}\) 

\(\Rightarrow3A=3.\left(3+3^2+3^3+...+3^{100}\right)\) 

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\) 

\(\Rightarrow3A-A=2A=\left[3^2+3^3+3^4+...+3^{101}\right]-\left[3+3^2+3^3+...+3^{100}\right]\)\(\Rightarrow2A=3^{101}-3\) 

Theo đề bài ta có  2A + 3 = 3n ( \(n\in N\) )

\(\Rightarrow2A+3=3^{101}-3+3=3^n\) 

\(\Rightarrow2A+3=3^{101}=3^n\)  

\(\Rightarrow3^{101}=3^n\) 

\(\Rightarrow101=n\) ( thỏa mãn điều kiện \(n\in N\)

Vậy n = 101