B=1/2+(1/2)2 +(1/2)3+...+(1/2)99
Chứng tỏ B<1
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{98}+\dfrac{1}{99}\)
\(S=\dfrac{1}{50}>100\) \(\dfrac{1}{51}>100\) \(\dfrac{1}{52}>100\) \(....\) \(\dfrac{1}{98}>100\) \(\dfrac{1}{99}>100\)
\(\Rightarrow S>\dfrac{1}{100}+\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}+\dfrac{1}{100}\\ \) {50 số 100}
\(S>50\cdot\dfrac{1}{100}=\dfrac{1}{2}\)
\(S>\dfrac{1}{2}\)
A<1/1*2+1/2*3+...+1/2021*2022
=>A<1-1/2+1/2-1/3+...+1/2021-1/2022<1
1: \(A=2x^3y^4-5x\cdot x^2y^4+xy^2\cdot x^2y^2=-2x^3y^4=-2\cdot\left(-1\right)^3\cdot\dfrac{1}{16}=\dfrac{1}{8}\)
2: \(B=9x^4y^6\cdot\left(-4xy\right)+19x^3y^5\cdot\left(-2\right)x^2y^2\)
\(=-36x^5y^7-38x^5y^7\)
\(=-74x^5y^7=-74\cdot\left(-1\right)^5\cdot2^7=9472\)
3: \(f\left(-1\right)=3\cdot\left(-1\right)^4+7\cdot\left(-1\right)^3+4\cdot\left(-1\right)^2-2\cdot\left(-1\right)-2=0\)
\(f\left(1\right)=3+7+4-2-2=10\)
(x-1)^3-x(x-2)^2+1
= x^3-3x^2+3x-1-x(x^2-4x+4)+1
= x^3-3x^2+3x-1- x^3+4x^2-4x+1
= x^2-x
= x(x-1)
HỌC TỐT!
@Zịt_siu_lừi
\(=x^3-3x^2+3x-1-x\left(x^2-4x+4\right)+1\)
\(=x^3-3x^2+3x-1-x^3+4x^2-4x+1\)
\(=x^2-x\)
1.
Đặt \(x-2=t\ne0\Rightarrow x=t+2\)
\(B=\dfrac{4\left(t+2\right)^2-6\left(t+2\right)+1}{t^2}=\dfrac{4t^2+10t+5}{t^2}=\dfrac{5}{t^2}+\dfrac{2}{t}+4=5\left(\dfrac{1}{t}+\dfrac{1}{5}\right)^2+\dfrac{19}{5}\ge\dfrac{19}{5}\)
\(B_{min}=\dfrac{19}{5}\) khi \(t=-5\) hay \(x=-3\)
2.
Đặt \(x-1=t\ne0\Rightarrow x=t+1\)
\(C=\dfrac{\left(t+1\right)^2+4\left(t+1\right)-14}{t^2}=\dfrac{t^2+6t-9}{t^2}=-\dfrac{9}{t^2}+\dfrac{6}{t}+1=-\left(\dfrac{3}{t}-1\right)^2+2\le2\)
\(C_{max}=2\) khi \(t=3\) hay \(x=4\)
a, \(\dfrac{a}{b}+\dfrac{2}{25}=1\Leftrightarrow\dfrac{a}{b}=1-\dfrac{2}{25}=\dfrac{23}{25}\)
b, \(\dfrac{a}{b}-\dfrac{5}{6}=1\Leftrightarrow\dfrac{a}{b}=1+\dfrac{5}{6}=\dfrac{11}{6}\)
\(=\left(\dfrac{-1}{2}\right)-\dfrac{1}{2}+\dfrac{-1}{2}=-\dfrac{3}{2}\)