tìm x thuộc N* biết 3^n+4^n=5^n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{5}< \frac{4}{x}< \frac{x}{3}\)
x là STN mà\(\frac{x}{5}< \frac{4}{x}\Rightarrow x^2< 20< 25^2\Rightarrow x< 5\)
x là STN mà \(\frac{4}{x}< \frac{x}{3}\Rightarrow x^2>12>9=3^2\Rightarrow x>3\)
Vậy \(x=4\)
4) Ta có: \(x\) ⋮ 13 vậy \(x\in B\left(13\right)\)
\(B\left(13\right)=\left\{0;13;26;39;52;65;78;91\right\}\)
Mà: \(20< x< 70\Rightarrow x\in\left\{26;39;52;65\right\}\)
5)
a) Ta có: \(\text{Ư}\left(32\right)=\left\{1;2;4;8;16;32\right\}\)
Vậy ước lớn hơn 4 và nhỏ hơn 17 của 32 là 8;16
b) Bạn viết lại đề
c) Ta có: x ⋮ 6 và 30 ⋮ x
Vậy x thuộc bội của 6 và ước của 30
Mà: \(Ư\left(30\right)=\left\{1;2;3;5;6;10;15;30\right\}\)
\(B\left(6\right)=\left\{0;6;12;18;24;30;36;42;...\right\}\)
\(\Rightarrow x\in\left\{6;30\right\}\)
x = 1 không phải là nghiệm.
x = 2 là nghiệm vì \(3^2+4^2=5^2\)
Ta sẽ chứng minh x > 2 thì đẳng thức sẽ không xảy ra. Thật vậy, chia cả hai vế cho \(5^x\) ta có: (vì \(5^x>0\))
\(\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x=1\) (*)
Với x > 2 thì \(\left(\frac{3}{5}\right)^x< \left(\frac{3}{5}\right)^2\) (1)
\(\left(\frac{4}{5}\right)^x< \left(\frac{4}{5}\right)^2\) (2)
=> \(\left(\frac{3}{5}\right)^2+\left(\frac{4}{5}\right)^x< \left(\frac{3}{5}\right)^2+\left(\frac{4}{5}\right)^2=1\)
=> Đẳng thức (*) không đúng với x > 2.
Vậy chỉ có x = 2 thỏa mãn \(3^x+4^x=5^x\)
Bài 1 ( x - 7 ) ( x + 3 ) < 0
\(\Rightarrow\hept{\begin{cases}x-7< 0\\x+3>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-7>0\\x+3< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 7\\x>-3\end{cases}}\) hoăc \(\hept{\begin{cases}x>7\\x< -3\end{cases}}\) ( vô lí )
\(\Rightarrow\) - 3 < x < 7
Mà \(x\in Z\)
\(\Rightarrow x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)
Vậy \(x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)
Bài 2 n - 1 là bội của n + 5 và n + 5 là bội của n - 1
Là 2 bài riêng biệt ak ????
Bài 3 : Tìm a,b. thuộc Z biết ab = 24 ; a + b = -10 ~~~~~ Lát nghĩ
Bài 4 : Tìm các cặp số nguyên có tổng bằng tích ~~~~~ tối lm
Câu 1:
\(xy+x+y=17\)
\(\Rightarrow\left(xy+x\right)+\left(y+1\right)=18\)
\(\Rightarrow x\left(y+1\right)+\left(y+1\right)=18\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)=18\)
Do \(x,y\in N\Rightarrow x+1,y+1\ge1\)
Từ đó ta có bảng sau:
x + 1 | 1 | 2 | 3 | 6 | 9 | 18 |
y + 1 | 18 | 9 | 6 | 3 | 2 | 1 |
x | 0 | 1 | 2 | 5 | 8 | 17 |
y | 17 | 8 | 5 | 2 | 1 | 0 |
2,
(x+1)x+3=(x+1)x+7
=>(x+1)x.(x+1)3=(x+1)x.(x+1)7
=> (x+1)3=(x+1)3+4
=> (x+1)3=(x+1)3.(x+1)4
=> 1=(x+1)3
=> x+1=1
=> x=0
Vậy x=0
Bạn cứ xem đi, để mình đăng lên dần.