Câu 1:
Cho ba số tự nhiên liên tiếp, biết bình phương của số cuối lớn hơn tích hai số đầu 79 đơn vị. Số bé nhất trong ba số đã cho là .......
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 số đó lần lượt là a ; a + 1 ; a + 2
Theo đề ra ta có :
\(\left(a+2\right)^2-a\left(a+1\right)=79\)
\(\Rightarrow a^2+4a+4-a^2-a=79\)
\(\Rightarrow3a+4=79\)
\(\Rightarrow3a=75\)
\(\Rightarrow a=25\)
Vậy số cần tìm là 25
Gọi 3 số tự nhiên liên tiếp đó là \(a;a+1;a+2\left(a\in N\right)\)
Theo đề bài ta có :
\(\left(a+2\right)^2-a\left(a+1\right)=79\)
\(\Leftrightarrow a^2+4a+4-a^2-a=79\)
\(\Leftrightarrow\left(a^2-a^2\right)+\left(4a-a\right)+4=79\)
\(\Leftrightarrow3a+4=79\)
\(\Rightarrow a=25\)
Vậy 3 số tự nhiên liên tiếp cần tìm là 25; 26; 27
Ta có: a-b =1
b-c=1
=>a-c=2 => c = a-2
c^2 -ab = 79
(a-2)^2 -ab = 79
a^2 - 4a + 4 -ab = 79
a^2 - 4a -ab = 79-4
a(a-4-b) = 75
a(1-4) =75 (vì a-b =1)
-3a = 75 => a = -25
Giúp lần cuối ! Nho k nha !
Gọi 3 số tự nhiên lt là \(a-1;a;a+1\left(a\in N\text{*}\right)\)
Ta có \(\left(a-1\right)\left(a+1\right)=a^2+a-a-1=a^2-1\)(đpcm)
Vậy ...