20 + 23 + 25 + . . . + 299
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A=2^{0}+2^{1}+2^{2}+....+2^{99}`
`=(1+2+2^{2}+2^{3}+2^{4})+(2^{5}+2^{6}+2^{7}+2^{8}+2^{9})+......+(2^{95}+2^{96}+2^{97}+2^{97}+2^{99})`
`=(1+2+2^{2}+2^{3}+2^{4})+2^{5}(1+2+2^{2}+2^{3}+2^{4})+.....+2^{95}(1+2+2^{2}+2^{3}+2^{4})`
`=31+2^{5}.31+....+2^{95}.31`
`=31(1+2^{5}+....+2^{95})\vdots 31`
\(A=2^0+2^1+2^2+2^3+2^4+2^5+2^6+...+2^{99}\)
\(=\left(2^0+2^1+2^2+2^3+2^4\right)+2^5\left(2^0+2^1+2^2+2^3+2^4\right)+...+2^{95}\left(2^0+2^1+2^2+2^3+2^4\right)=31+31.2^5+...+31.2^{95}=31\left(1+2^5+...+2^{95}\right)⋮31\)
A = 20 + 21 + 22 + 23 + 24 + 25 … + 299
A=( 20 + 21 + 22 + 23 + 24) +( 25 … + 299)
A= 20.(20 + 21 + 22 + 23 + 24)+25.( 25 … + 299)
A= 1. 31+ 25.31… + 295.31
A= 31. (1+25...+295)
KL: ......
\(A=2^0+2^1+2^2+2^3+2^4+...+2^{99}=\left(2^0+2^1+2^2+2^3+2^4\right)+2^5\left(2^0+2^1+2^2+2^3+2^4\right)+...+2^{95}\left(2^0+2^1+2^2+2^3+2^4\right)=31+31.2^5+...+31.2^{95}=31\left(1+2^5+...+2^{95}\right)⋮31\)
\(A=2+2^3+...+2^{101}\)
\(4A=2^3+2^5+...+2^{101}+2^{103}\)
\(4A-A=2^{103}-2\)
\(3A=2^{103}-2\)
\(A=\dfrac{2^{103}-2}{3}\)
\(\Rightarrow1+2+2^3+...+2^{101}=A+1=\dfrac{2^{103}+1}{3}\)
\(2^2+2^3+2^4+2^5+...+2^{99}=2^2\left(1+2\right)+2^4\left(1+2\right)+...+2^{98}\left(1+2\right)=3.2^2+3.2^4+...+3.2^{98}=3\left(2^2+2^4+...+2^{98}\right)⋮3\)
\(A=2^0+2^1+2^2+2^3+...+2^{98}+2^{99}\)
\(\Rightarrow A=\left(2^0+2^1\right)+2^2\left(2^0+2^1\right)+...+2^{98}\left(2^0+2^1\right)\)
\(\Rightarrow A=3+2^2.3+...+2^{98}.3\)
\(\Rightarrow A=3.\left(1+2^2+...+2^{98}\right)⋮3\)
Vậy \(A⋮3\)
a,
\(3^{34}=\left(3^{17}\right)^2=129140163^2\)
\(5^{20}=\left(5^{10}\right)^2=9765625^2\)
Vậy..........
Đùa chút thui
c,\(3^{23}=3^{21}.3^2=\left(3^3\right)^7.9=27^7.9\)
\(5^{15}=\)\(5^{14}.5=\left(5^2\right)^7.5=25^7.5\)
\(27^7>25^7\)và \(9>5\)
nên \(3^{23}>5^{15}\)
b,
5^299 < 5^300 = (5^2)^150 = 25^150
3^501 = (3^3)^167 = 27^167
=> 27^167 > 25^150 => 3^501 > 5^299
1/
Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.
Số số hạng: $(101-1):4+1=26$
$A=(101+1)\times 26:2=1326$
2/
$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$
$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$
$=(1+2+2^2)(1+2^3+2^6+2^9)$
$=7(1+2^3+2^6+2^9)\vdots 7$
\(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}=2\left(1+2^2+2^3+2^4\right)+...+2^{96}\left(1+2^2+2^3+2^4\right)=2.31+2^6.31+...+2^{96}.31=31\left(2+2^6+...+2^{96}\right)⋮31\)
đặt 2 ra ngoài
Đăt A=20+23+25+...+299
=>4A=22+25+27+...+2101
=>4A - A=(23+25+27+...+2101)-(20+23+25+...+299)
=>3A=2101-20
=>A=(2101-1)/3