K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2016

\(3^{2006}:3^{2005}+10^3:10^2\)

= \(3^{2006-2005}+10^{3-2}\)

= \(3^1+10^1\)

= 3 + 10

= 13
 

29 tháng 9 2016

30 mu 1

27 tháng 9 2021

a) \(13\times17-256:16+14:7-1\)

\(=221-16+2-1\)

\(=206\)

2 tháng 12 2018

Ai mà tính đc bạn

1-3=1(1-3)

32-33=32(1-3)

⇒10�=102005+10102005+1

10�=102005+1+9102005+1=102005+1102005+1+9102005+1

10�=1+9102005+1

tương tự như trên ta có :

10�=1+9102006+1

ta thấy:102005+1<102006+1

⇒9102005+1>9102006+1

⇒1+9102005+1>1+9102006+1

=>10A>10B

=>A>B

12 tháng 1 2019

N=\(\frac{-7}{10^{2005}}+\frac{-15}{10^{2005}}\)                                                     Và                                              M=\(\frac{-15}{10^{2005}}+\frac{-7}{10^{2006}}\)

Ta xét 2 PS \(\frac{-7}{10^{2005}}\) và  \(\frac{-7}{10^{2006}}\)

Ta có tích . (-7).102006<(-7).102005           (vì 102006>102005)

Nên  \(\frac{-7}{10^{2005}}\)   <   \(\frac{-7}{10^{2006}}\)

Nên  \(\frac{-7}{10^{2005}}+\frac{-15}{10^{2005}}\)         <           \(\frac{-15}{10^{2005}}+\frac{-7}{10^{2006}}\)

24 tháng 1 2020

A = 2006 + 20062 + 20063 + .... + 200610  

A có số số hạng : ( 10 - 1 ) : 1 + 1 = 10 ssh . Ta chia A thành 5 cặp , mỗi cặp có 2 số . 

=> A = ( 2006 + 20062 ) + ( 20063 + 20064 ) + .... + ( 20069 + 200610 ) 

     A =  2006 . ( 1 + 2006 ) +  20063 . ( 1 + 2006 ) + .... + 20069 . ( 1 + 2006 ) 

     A = 2006 . 2007 + 20063 . 2007 + ... + 20069 . 2007 

     A = 2007 . ( 2006 + 2006+ ... + 20069 ) 

  =>  A \(⋮\) 2007 ( đpcm ) 

23 tháng 10 2021

b: \(B=2\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=3\cdot\left(2+...+2^{59}\right)⋮3\)

\(B=2+2^2+...+2^{60}\)

\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{58}\right)⋮7\)

23 tháng 10 2021

vui

24 tháng 4 2017

1.a)A = (1 - 1/3)(1-2/5)...(1-5/5)....(1-9/5)

      =(1-1/3)....0.....(1-9/5)

      =0

     =>đpcm.

b)ta xét:

1/22 = 1/2x2 < 1/1x2

.............

1/8= 1/8x8 <1/7x8

=>B < 1/1x2 + 1/2x3 ... + 1 + 1/7x8

<=> B <1 - 1/2 + 1/2  - 1/3  + ... + 1/7 - 1/8

<=> B < 1 - 1/8 = 7/8 < 1

=> B < 1 => đpcm

2.a) Đặt m = 2007(2006+2007) = 2006(2006 + 2007) + (2006+2007)

      Đặt n = 2006(2007+2008) = 2006(2006+2007) + (2006 + 2006)

Ta thấy : (2006+2007) > (2006 + 2006) => m > n , áp dụng công thức "a.d > c.d <=> a/b > b/d (a,c thuộc Z// b,d thuộc N)

=> A > B

   b)ta có: D = 196 + 197/197 + 198 = (196/197+198) + (197/197+198) < 196/197 + 197/198 = C

=> C > D

c)gọi 2010 là a

ta thấy : (a + 1)(a-3) = (a - 1)(a - 3) + 2(a - 3) < (a - 1)(a - 3) + 2(a - 1) = (a - 1)(a - 1)

áp dụng: ad > bc <=> a/b > c/d ( a,b,c,d thuộc Z// b,d > 0)

=> E > F

x=2005

nên x+1=2006

\(f\left(x\right)=x^{2005}-x^{2004}\left(x+1\right)+x^3\left(x+1\right)-...+x\left(x+1\right)\)

\(=x^{2005}-x^{2005}-x^{2004}+x^{2004}+...-x^3-x^2+x^2+x\)

=x=2005