K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2016

bài này dễ

29 tháng 9 2016

Ta có: n3-n = n(n2-1) = n(n+1)(n-1)

Vì (n-1)n(n+1) là 3 số nguyên liên tiếp nên (n-1)n(n+1) chia hết cho 3

Hay n3-n chia hết cho 3     (1)

Mặt khác : (n-1)n là 2 số nguyên liên tiếp nên (n-1)n(n+1) chia hết cho 2

Hay n3-n chia hết cho 2         (2) 

Từ (1) và (2) suy ra: n3-n chia hết cho 6

6 tháng 12 2019

A = n3 – n (có nhân tử chung n)

= n(n2 – 1) (Xuất hiện HĐT (3))

= n(n – 1)(n + 1)

n – 1; n và n + 1 là ba số tự nhiên liên tiếp nên

+ Trong đó có ít nhất một số chẵn ⇒ (n – 1).n.(n + 1) ⋮ 2

+ Trong đó có ít nhất một số chia hết cho 3 ⇒ (n – 1).n.(n + 1) ⋮ 3

Vậy A ⋮ 2 và A ⋮ 3 nên A ⋮ 6.

31 tháng 10 2021

\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)

Vì \(n-1,n,n+1\) là 3 số nguyên liên tiếp nên có 1 số chia hết cho 2,1 số chia hết cho 3

Mà (2,3)=1\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮2.3=6\)

7 tháng 1 2018

a) Gợi ý: phân tích 50 n + 2   -   50 n + 1 = 245.10. 50 n .

b) Gợi ý: phân tích n 3  - n = n(n - 1)(n +1).

20 tháng 1 2016

A=n3+n2+2n2+2n

=n2(n+1)+2n(n+1)

=(n+1)(n2+2n)

=n(n+1)(n+2)

Vì tích 3 số tự nhiên liên tiếp luôn chia hết cho 3

=>n(n+1)(n+2) luôn chia hết cho 3 với mọi 

=>A luôn chia hết cho 3 với mọi số nguyên n.

5 tháng 10 2019

Ta có n3 - n=n( n2-1)=(n-1)n(n+1)

Mà tích ba số tự nhiên liên tiếp nên chia hết cho 2 và 3 => chia hết cho 6

5 tháng 10 2019

A = n3 – n (có nhân tử chung n)

= n(n2 – 1) (Xuất hiện HĐT (3))

= n(n – 1)(n + 1)

n – 1; n và n + 1 là ba số tự nhiên liên tiếp nên

+ Trong đó có ít nhất một số chẵn ⇒ (n – 1).n.(n + 1) ⋮ 2

+ Trong đó có ít nhất một số chia hết cho 3 ⇒ (n – 1).n.(n + 1) ⋮ 3

Vậy A ⋮ 2 và A ⋮ 3 nên A ⋮ 6.

-Chanh-

5 tháng 1 2024

Ta có:

n(n + 1)(n + 2)

= (n² + n)(n + 2)

= n³ + 2n² + n² + 2n

= n³ + 3n² + 2n

Mà n(n + 1)(n + 2) là tích của ba số nguyên liên tiếp (do n là số nguyên)

⇒ n(n + 1)(n + 2) ⋮ 3

⇒ (n³ + 3n² + 2) ⋮ 3

Ta có:

n³ + 11n

= n³ + 3n² + 2n - 3n² + 9n

= (n³ + 3n² + 2n) - 3n(n - 3)

Ta có:

3 ⋮ 3

⇒ 3n(n - 3) ⋮ 3 (với mọi n nguyên)

Mà (n³ + 3n² + 2n) ⋮ 3 (cmt)

⇒ [(n³ + 3n² + 2n) - 3n(n - 3)] ⋮ 3

Vậy (n³ + 11n) ⋮ 3 với mọi số nguyên n

7 tháng 2 2018

Rút gọn được n 3 – n. Biến đổi thành Q = n(n – 1)(n + 1). Ba số nguyên liên tiếp trong đó sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vì Q ⋮ 6.

11 tháng 10 2021

\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\) (vì là 3 số nguyên lt)

11 tháng 10 2021

\(n^3+3n^2+2n-n\left(n^2+3n+2\right)\)

\(=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)

Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3

\(\Rightarrow n^3+3n^2+2n=n\left(n+1\right)\left(n+2\right)⋮2.3=6\forall n\in Z\)

NV
18 tháng 9 2021

a. 

Đề bài sai, ví dụ \(n=1\) lẻ nhưng  \(1^2+4.1+8=13\) ko chia hết cho 8

b.

n lẻ \(\Rightarrow n=2k+1\)

\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48

5 tháng 1 2024

Ta có:

n(n + 1)(n + 2)

= (n² + n)(n + 2)

= n³ + 2n² + n² + 2n

= n³ + 3n² + 2n

Mà n(n + 1)(n + 2) là tích của ba số nguyên liên tiếp (do n là số nguyên)

⇒ n(n + 1)(n + 2) ⋮ 3

⇒ (n³ + 3n² + 2) ⋮ 3

Ta có:

n³ + 11n

= n³ + 3n² + 2n - 3n² + 9n

= (n³ + 3n² + 2n) - 3n(n - 3)

Ta có:

3 ⋮ 3

⇒ 3n(n - 3) ⋮ 3 (với mọi n nguyên)

Mà (n³ + 3n² + 2n) ⋮ 3 (cmt)

⇒ [(n³ + 3n² + 2n) - 3n(n - 3)] ⋮ 3

Vậy (n³ + 11n) ⋮ 3 với mọi số nguyên n