biet x>2016 và y<2017 so sanh x va y lop 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: \(\left.\begin{matrix} \frac{x}{4} = \frac{y}{5} & & \\ \frac{y}{5} = \frac{z}{2} & & \end{matrix}\right\}\)
=> \(\frac{x}{4} = \frac{y}{5} = \frac{z}{2}\)
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4} = \frac{y}{5} = \frac{z}{2} = \frac{x - y + z}{4 - 5 + 2}= \frac{98}{1}= 98\)
=> x = 98 * 4 = 392
y = 98 * 5 = 490
z = 196
Vậy x = 392, y = 490, z = 196
Bài 3:
Gọi x,y lần lượt là số cây trồng của lớp 7A, 7B
Theo đề bài ta có: \(\frac{x}{4} = \frac{y}{5}\) và y - x = 12
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4} = \frac{y}{5}= \frac{y - x}{5 - 4}= \frac{12}{1}= 12\)
=> x = 12 * 4 = 48
y = 12 * 5= 60
Vậy lớp 7A trồng 48 cây
.......lớp 7B trồng 60 cây
Ta có: (x+2015)^2016>=0(với mọi x)
|y-2017|>=0(với mọi y)
Do đó, (x+2015)^2016+|y-2017|>=0(với mọi x,y)
mà (x+2015)^2016+|y-2017|=0
nên (x+2015)^2016=0 và |y-2017|=0
x+2015=0 y-2017=0
x=0-2015 y=0+2017
x=-2015 y=2017
Vậy x=-2015 và y=2017 thì x,y thỏa mãn đề
x^2016 chia hết cho p
suy ra x chia hết cho p (x^2016 đồng dư với x)
y^2017 chia hết cho p
suy ra y chia hết cho p(y^2017 đồng dư với y)
suy ra x+y chia hết cho p
do p>1 nên 1+x+y ko chia hết cho p
Câu 1:
a: \(\Leftrightarrow2x^2-x-5< x^2+x-6\)
\(\Leftrightarrow x^2-2x+1< 0\)
hay \(x\in\varnothing\)
b: \(\Leftrightarrow x^2-5x-x+4>0\)
\(\Leftrightarrow x^2-6x+4>0\)
\(\Leftrightarrow\left(x-3\right)^2>5\)
hay \(\left[{}\begin{matrix}x>\sqrt{5}+3\\x< -\sqrt{5}+3\end{matrix}\right.\)
l x l + l y l = 3
=> x thuộc { - 2 , - 1 , 0 , 1 , 2 , 3} mà x > 0 => x thuộc { 1 ; 2 ; 3 }
=> y thuộc { -2 , - 1 ,0 , 1 , 2,3 } mà y < 0 => y thuộc { -2 ; -1 }
Vậy ( x , y ) = ....
Ta có\(\left|x\right|+\left|y\right|=3\)
Vì x và y có cùng vai trò nên không mất tính tổng quát ta giả sử \(x\le y\Rightarrow\left|x\right|\ge\left|y\right|\)
Mà x,y<0 nên |x|,|y|>0
Do đó:\(\hept{\begin{cases}\left|x\right|=2\\\left|y\right|=1\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)(Vì x,y<0)
Vậy \(\left(x,y\right)\in\left\{\left(-1,-2\right),\left(-2,-1\right)\right\}\)
\(x>2016\)
\(x=2017\)
\(y< 2017\)
\(y=2016\)
\(2017>2016\)
\(x>y\)
ta lấy ví dụ x = 2017
y = 2016
vậy :
y < x
hay x > y
nhé !