Cho tam giác ABC và các điểm M,N nằm trong tam giác sao cho đường thẳng MN cắt AB và AC. Chứng minh: BM + MN + NC < AB + AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
Do G là trọng tâm ΔABC
\(\to \frac{{GC}}{{CE}} = \frac{2}{3};\frac{{BG}}{{BD}} = \frac{2}{3}\)
Mà GM//AB; GN//AC hay GM//BE; GN//DC
Theo định lí ta-lét trong ΔCBE và BDC
\(\begin{array}{l} \to \frac{{GC}}{{CE}} = \frac{{CM}}{{CB}} = \frac{2}{3};\frac{{BG}}{{BD}} = \frac{{BN}}{{BC}} = \frac{2}{3}\\ \to \frac{{CM}}{{BC}} = \frac{{BN}}{{BC}} = \frac{2}{3} \to \frac{{BM}}{{BC}} = \frac{{CN}}{{BC}} = \frac{1}{3}\\ \to CM = BN;BM = CN\\ \to BM = MN = CN \end{array}\)
a/ Xét tam giác MNC có:
I trung điểm MN
K trung điểm MC
Vậy IK là đường trung bình của tam giác MNC
=> IK = 1/2 NC (1)
Mặt khác, xét tam giác MCB có:
K trung điểm MC
J trung điểm BC
Vậy KJ là đường trung bình tam giác MCB
=> KJ =1/2 BM (2)
mà BM = CN (gt) (3)
Từ (1), (2) và (3) => IK = KJ
=> Tam giác IKJ cân tại K
Lại có IK // NC (tính chất đường trung bình trong tam giác)
=> góc KIJ = góc CEJ (đồng vị) (4)
KJ // BM (tính chất đường trung bình trong tam giác)
=> góc KJI = ADJ (so le trong) (5)
mà góc KIJ = góc KJI (tam giác IKJ cân tại K) (6)
Từ (4), (5), (6) => góc ADE = góc AED
=> Tam giác ADE cân tại A (đpcm)
b/ Ko biết làm ^^
c/ Ko biết làm ^^