2ⁿ + 2 ⁿ+³ = 144
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{16}{2^n}=2\)=> \(2^n=16:2=8\)=> \(n=3\)
b) \(\frac{\left(-3\right)^n}{81}=-27\)=> \(\left(-3\right)^n=-27.81=-2187\)=> n=7
c) \(8^n.2^n=16^n\)
a) \(\frac{16}{2^n}=2\)
\(2^n=\frac{16}{2}=8\)
\(2^n=2^3\)
\(\Rightarrow n=3\)
b) \(\frac{\left(-3\right)^n}{81}=-27\)
\(\left(-3\right)^n=\left(-27\right).81=-2187\)
\(\left(-3\right)^n=\left(-3\right)^7\)
\(\Rightarrow n=7\)
c) Bạn viết thiếu đề nhé !
\(8^n.2^n=?\)
a) Đặt A = \(6^5.5-3^5\)
\(=\left(2.3\right)^5.5-3^5\)
\(=2^5.3^5.5-3^5\)
\(=3^5.\left(2^5.5-1\right)\)
\(=3^5.\left(32.5-1\right)\)
\(=3^5.159\)
\(=3^5.3.53⋮53\)
Vậy \(A⋮53\)
b) Đặt \(B=2+2^2+2^3+...+2^{120}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{119}.\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{119}.3\)
\(=3.\left(2+2^3+...+2^{59}\right)⋮3\)
Vậy \(B⋮3\)
\(B=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2\right)+3^4.\left(1+2+2^2\right)+...+2^{118}.\left(1+2+2^2\right)\)
\(=2.7+2^4.7+...+2^{118}.7\)
\(=7.\left(2+2^4+...+2^{118}\right)⋮7\)
Vậy \(B⋮7\)
\(B=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)
\(+...+\left(2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)
\(+2^{116}.\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+2^6.31+...+2^{116}.31\)
\(=31.\left(2+2^6+...+2^{116}\right)⋮31\)
Vậy \(B⋮31\)
\(B=\left(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8\right)+\left(2^9+2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}+2^{16}\right)\)
\(+...+\left(2^{113}+2^{114}+2^{115}+2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)+2^9.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)
\(+...+2^{113}.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)
\(=2.255+2^9.255+...+2^{113}.255\)
\(=255.\left(2+2^9+...+2^{113}\right)\)
\(=17.15.\left(2+2^9+...+2^{113}\right)⋮17\)
Vậy \(B⋮17\)
c) Đặt C = \(3^{4n+1}+2^{4n+1}\)
Ta có:
\(3^{4n+1}=\left(3^4\right)^n.3\)
\(2^{4n}=\left(2^4\right)^n.2\)
\(3^4\equiv1\left(mod10\right)\)
\(\Rightarrow\left(3^4\right)^n\equiv1^n\left(mod10\right)\equiv1\left(mod10\right)\)
\(\Rightarrow3^{4n+1}\equiv\left(3^4\right)^n.3\left(mod10\right)\equiv1.3\left(mod10\right)\equiv3\left(mod10\right)\)
\(\Rightarrow\) Chữ số tận cùng của \(3^{4n+1}\) là \(3\)
\(2^4\equiv6\left(mod10\right)\)
\(\Rightarrow\left(2^4\right)^n\equiv6^n\left(mod10\right)\equiv6\left(mod10\right)\)
\(\Rightarrow2^{4n+1}\equiv\left(2^4\right)^n.2\left(mod10\right)\equiv6.2\left(mod10\right)\equiv2\left(mod10\right)\)
\(\Rightarrow\) Chữ số tận cùng của \(2^{4n+1}\) là \(2\)
\(\Rightarrow\) Chữ số tận cùng của C là 5
\(\Rightarrow C⋮5\)
24 : (x + 1) + 2 = 6
16 : (x + 1) = 6 - 2
16 : (x + 1) = 4
x + 1 = 16 : 4
x + 1 = 4
x = 4 - 1
x = 3
(x-1)3\(=\)(x-5)3
\(\Leftrightarrow\)(x-1)3-(x-1)5\(=\)0
\(\Leftrightarrow\)(x-1)3\([\)1-(x-1)2\(]\)\(=\)0
\(\Leftrightarrow\)(x-1)3\(=\)0 hoặc 1-(x-1)2\(=\)0
\(\Leftrightarrow\)x-1\(=\)0 hoặc x-1\(=\pm\)1
\(\Leftrightarrow\)x\(=\)1 hoặc x\(=\)2; x\(=\)0
Vậy x\(\in\){1;2;0}
b) (x-1)n\(=\)(x-1)n+2
\(\Leftrightarrow\)(x-1)n-(x-1)n+2\(=\)0
\(\Leftrightarrow\)(x-1)n\([\)1-(x-1)2\(]\)\(=\)0
\(\Leftrightarrow\)(x-1)n\(=\)0 hoặc (x-1)2\(=\)1
\(\Leftrightarrow\)x\(=\)1 hoặc x\(=\)2; x\(=\)0
Vậy x\(\in\){1;2;0}
a, đề k rõ :v
b, (x + 2)4 = 625
=> (x + 2) = (+5)4
=> x + 2 = + 5
=> x = 3 hoặc x = -7
vậy_
a, \(4^{n+2}\) = 64
\(4^{n+2}\) = \(4^3\)
n + 2 = 3
n = 3 -2
n = 1
a, \(\left(x+2\right)^4\) = 625
\(\left(x+2\right)^4\) = \(5^4\)
x +2 = 5
x= 5 - 2
x= 3
Tk mk nha
a) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}.\)
\(\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
b) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^n}{c^n}=\frac{b^n}{d^n}=\frac{\left(a-b\right)^n}{\left(c-d\right)^n}\)(*)
mà \(\frac{a^n}{c^n}=\frac{b^n}{d^n}=\frac{a^n-b^n}{c^n-d^n}\)
Từ (*) \(\Rightarrow\frac{a^n-b^n}{c^n-d^n}=\frac{\left(a-b\right)^n}{\left(c-d\right)^n}\)
Ý bạn là 2n+2n+3=144