K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2016

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a+b}{b+3}=\frac{d+3}{a+d}=\frac{a+b+d+3}{b+3+a+d}=1\)

\(\Rightarrow\frac{a+b}{b+3}=1\)

\(\Rightarrow a+b=b+3\)

\(\Rightarrow a=3\) ( cùng bớt cả 2 vế đi b )

Vậy a = 3

1 tháng 8 2016

Ta có:

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a-b}{c-d}=\frac{b}{d}\)

\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)(đpcm)

16 tháng 11 2019

ta có :

45 = 15 . 3

     = 5 . 9

      = 45 . 1

vì a,b là stn nên ko có số nào thỏa mãn điều kiện

19 tháng 11 2019

cam on nguyen thi ngoc khue nhung ban llam sai roi 

Xin lỗi nha, mình ko biết vẽ hình trên máy nên bạn tự vẽ hình giùm mình nha

b)Ta có:\(\widehat{MNB}=\dfrac{1}{2}\stackrel\frown{BM}\left(1\right)\)( góc nội tiếp chắn cung BM)

\(\widehat{AEB}=\dfrac{1}{2}\left(\stackrel\frown{AB-\stackrel\frown{AM}}\right)\)= \(\dfrac{1}{2}\stackrel\frown{BM}\)(2) (Góc có đỉnh ngoài đường tròn)

Từ (1) và (2) ⇒ \(\widehat{MNB}=\widehat{AEB}\)

Xét Δ BMN và Δ BFE có:

\(\widehat{B}\): góc chung

\(\widehat{MNB}=\widehat{AEB}\) ( cùng chắn \(\stackrel\frown{BM}\) )

Do đó: Δ BMN \(\sim\) Δ BFE(g-g)

⇔ BM . BE =BN . BF (đpcm)

vẽ giùm cái hình đi, lười vẽ hình trên này quá

27 tháng 7 2015

Cho a/b=(a+b+c)3/(b+c+d)= [(a+b+c)/(b+c+d)]3

Ap dung tinh chat day ti so bang nhau ta co : 

a/b=b/c=c/d ta có  

(a+b+c)/(b+c+d)= a/b=b/c=c/d (1)  

Mặt khác   a/b=b/c \(\Rightarrow\)a=b2/c (2)  

c/d=b/c $\Rightarrow$\(\Rightarrow\)d=c2/b (3)  

Ta có (2)/(3)=a/d= b3/c3 

(a/d)=(b/c)3 (4)  

Theo (1 ) thì (a+b+c)/(b+c+d)=b/c  

Vay kết hợp (1) suy ra (a+b+c)3/(b+c+d)3=(a/d)