Cho đa thức F(x) = X4 + 2x3 - 2x2- 6x + 5 trong các số sau 1;-1;2;-2 số nào là nghiệm của đa thức F(x). giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+2x^3-2x^2-6x+5=0\\ \Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(4x^3-8x^2+4x\right)+\left(5x^2-10x+5\right)=0\\ \Leftrightarrow x^2\left(x^2-2x+1\right)+4x\left(x^2-2x+1\right)+5\left(x^2-2x+1\right)=0\\ \Leftrightarrow\left(x^2-2x+1\right)\left(x^2+4x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x^2+4x+4\right)+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(x+2\right)^2+1=0\left(vô.lí\right)\end{matrix}\right.\\ \Leftrightarrow x=1\)
Bạn thay từng số 1,-1,5,-5 vào đa thức f(x)
Nếu số nào thay vào mà f(x)=0 thì số đó là nghiệm của đa thức
`m=1=>f(x)=0`
`=>m=1(tm)`
`m=-1=>f(x)=9`
`=>m=-1(l)`
`m=2=>f(x)=1`
`=>m=2(l)`
`m=-2=>f(x)=-7`
`=>m=-2(l)`
Vậy m=1 thì f(x)=0
Với x = 1
Ta có: 8(1) = 1.4+2.1.3-2.1.2-6.1-5=-5\(\ne\)0
Với x = -1
Ta có:8(-1)=(-1).4+2.(-1).3-2.(-1).2-6.(-1)-5 =-5\(\ne\)0
Với x = 5
Ta có:8(5)=5.4+2.5.3-2.5.2-6.5-5=-5\(\ne\)0
Với x = -5
Ta có:8(-5)=(-5).4+2.(-5).3-2.(-5).2-6.(-5)-5=-5\(\ne\)0
Vậy trong các số trên không có số nào là nghiệm của đa thức 8(x)
bài của bn cho hơi ki lạ một chút nhưng nếu đáp án của mk đúng thì 1 tick cho mk nk!!!!!!
a, \(f\left(x\right)=9-3x^5+7x-2x^3+3x^5+x^2-3x-7x^4=-7x^4-2x^3+x^2+4x+9\)
\(g\left(x\right)=x^4+1+2x^2+7x^4+2x^3-3x-2x^2-x=8x^4+2x^3-4x+1\)
b, Ta có : \(h\left(x\right)=f\left(x\right)+g\left(x\right)=-7x^4-2x^3+x^2+4x+9+8x^4+2x^3-4x+1\)
\(=x^4+x^2+10\)
c, Ta có : \(x^4\ge0\forall x;x^2\ge0\forall x;10>0\Rightarrow x^4+x^2+10>0\)
Vậy phương trình ko có nghiệm ( đpcm )
Kết luận cuối là Vậy đa thức h(x) ko có nghiệm ( đpcm ) nhé
P(x) = 3x2 – 5 + x4 – 3x3 – x6 – 2x2 – x3
= – x6 + x4 + (– 3x3 – x3) + (3x2 – 2x2) – 5
= – x6 + x4 – 4x3 + x2 – 5.
= – 5+ x2 – 4x3 + x4 – x6
Và Q(x) = x3 + 2x5 – x4 + x2 – 2x3 + x –1
= 2x5 – x4 + (x3 – 2x3) + x2 + x –1
= 2x5 – x4 – x3 + x2 + x –1.
= –1+ x + x2 – x3 – x4 + 2x5
a.
$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$
b.
$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$
c.
$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$
d.
$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$
$=(x+1)(x^2-4x+1)$
e.
$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$
$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$
f.
$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$
$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$
g.
$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$
$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$
$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$
$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$
h.
$x^6+2x^5+x^4-2x^3-2x^2+1$
$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$
$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$
Thay x = 1 vào đa thứ F(x) ta cso
F(x) = 14 + 2.13 - 2.12- 6.1 + 5
F (x) = 0
Vậy 1 không phải là nghiệm của đa thức F(x)
Thay x = -1 vào đa thức F(x) ta có
F(x) = -14 + 2.(-13) - 2.(-12)- 6. (-1) + 5
F(x) = 8
Vậy -1 không phải là nghiệm của đa thức F(x)
Thay x = 2 vào đa thức F(x) ta có
F(x) = 24 + 2.23 - 2.22- 6.2 + 5
F(x) = 17
Vậy 2 không phải là nghiệm của đa thức F(x)
Thay x = 12 vào đa thức F(x) ta có
F(x) = -24 + 2.(-23) - 2.(-22)- 6.(-2) + 5
F(x)= -7
Vậy -2 không phải là nghiệm của đa thức F(x)
Thank