K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
23 tháng 4 2022

\(\left(C\right):\left(x-1\right)^2+\left(y-2\right)^2=10\) tâm \(I\left(1,2\right)\) bán kính \(R=\sqrt{10}\)

Vì tam giác \(ABC\) đều nên \(AI\) vuông góc với \(BC\)\(I\) là trọng tâm tam giác \(ABC\) nên \(AI=2d\left(I,BC\right)\Rightarrow d\left(I,BC\right)=\dfrac{AI}{2}=\dfrac{R}{2}=\dfrac{\sqrt{10}}{2}\).

Ta có: \(AI\) đi qua \(A\left(0,-1\right)\) và \(I\left(1,2\right)\) suy ra phương trình đường thẳng \(AI\) là \(3x-y-1=0\) suy ra \(BC\)\(x+3y+c=0\)

\(d\left(I,BC\right)=\dfrac{\left|1+3.2+c\right|}{\sqrt{1^2+3^2}}=\dfrac{\left|c+7\right|}{\sqrt{10}}=\dfrac{\sqrt{10}}{2}\Leftrightarrow\left[{}\begin{matrix}c=-2\\c=-12\end{matrix}\right.\)

Với \(c=-12\)\(BC:x+3y-12=0\) 

\(\left(0-3-12\right)\left(1+2.3-12\right)>0\) nên \(A,I\) nằm cùng phía so với \(BC\) (loại).

Vậy \(c=-2\)\(BC:x+3y-2=0\)

Tọa độ hai điểm \(B,C\) chính là giao điểm của đường thẳng \(BC\) và đường tròn \(\left(C\right)\)

\(x+3y-2=0\Leftrightarrow x=2-3y\)

\(\left(2-3y-1\right)^2+\left(y-2\right)^2=10\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{1+\sqrt{3}}{2}\Rightarrow x=\dfrac{1-3\sqrt{3}}{2}\\y=\dfrac{1-\sqrt{3}}{2}\Rightarrow x=\dfrac{1+3\sqrt{3}}{2}\end{matrix}\right.\)

Ta có tọa độ hai điểm \(B,C\).

 

NM
2 tháng 1 2022

ta có 

\(x^2+y^2-2x+4y=0\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=5\)

Vậy tập hợp các điểm thỏa mãn phương trình trên là đường tròn tâm I( 1,-2) bán kính \(\sqrt{5}\)

NV
29 tháng 3 2022

Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=\sqrt{5}\)

Điểm M thuộc (C) thỏa mãn khoảng cách từ M tới \(\Delta\) lớn nhất khi M là giao điểm của (C) và đường thẳng d qua I và vuông góc \(\Delta\)

Phương trình d có dạng:

\(2\left(x-1\right)-1\left(y+2\right)=0\Leftrightarrow2x-y-4=0\)

Hệ pt tọa độ giao điểm (C) và d:

\(\left\{{}\begin{matrix}x^2+y^2-2x+4y=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+\left(2x-4\right)^2-2x+4\left(2x-4\right)=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x=0\\y=2x-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(0;-4\right)\\M\left(2;0\right)\end{matrix}\right.\)

Với \(M\left(0;-4\right)\Rightarrow d\left(M;\Delta\right)=\dfrac{\left|-2.4+7\right|}{\sqrt{1^2+2^2}}=\dfrac{1}{\sqrt{5}}\)

Với \(M\left(2;0\right)\Rightarrow d\left(M;\Delta\right)=\dfrac{\left|2+0+7\right|}{\sqrt{1^2+2^2}}=\dfrac{9}{\sqrt{5}}\)

Do \(\dfrac{9}{\sqrt{5}}>\dfrac{1}{\sqrt{5}}\) nên \(M\left(2;0\right)\) là điểm cần tìm

25 tháng 4 2018

de ***** tu lam dihihi

NV
11 tháng 7 2021

Đường tròn (C) tâm \(O\left(2;3\right)\) bán kính \(R=10\)

Gọi I là trung điểm AB \(\Rightarrow IO\perp AB\) 

\(\Rightarrow IO=d\left(O;AB\right)=\dfrac{\left|3.2-4.3+1\right|}{\sqrt{3^2+4^2}}=1\)

Áp dụng định lý Pitago:

\(IA=\sqrt{OA^2-OA^2}=\sqrt{100-1}=3\sqrt{11}\)

\(\Rightarrow AB=2IA=6\sqrt{11}\)

NV
7 tháng 2 2022

Do A là giao điểm AB, AC nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}2x+y-12=0\\x+4y-6=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=6\\y=0\end{matrix}\right.\) \(\Rightarrow A\left(6;0\right)\)

Do B thuộc AB nên tọa độ có dạng: \(B\left(b;-2b+12\right)\)

Do C thuộc AC nên tọa độ có dạng: \(C\left(-4c+6;c\right)\)

Do M là trung điểm cạnh BC nên theo công thức trung điểm:

\(\left\{{}\begin{matrix}b-4c+6=2.0\\-2b+12+c=2.5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b-4c=-6\\-2b+c=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=2\\c=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}B\left(2;8\right)\\C\left(-2;2\right)\end{matrix}\right.\)

28 tháng 9 2019

NV
30 tháng 4 2019

(C) có tâm \(I\left(1;1\right)\) bán kính \(R=2\)

\(\Delta//d\Rightarrow\) phương trình \(\Delta\) có dạng: \(3x-4y+c=0\)

Áp dụng định lý Pitago: \(d\left(I;\Delta\right)=\sqrt{R^2-\left(\frac{AB}{2}\right)^2}=1\)

\(\Rightarrow\frac{\left|3.1-4.1+c\right|}{\sqrt{3^2+4^2}}=1\Leftrightarrow\left|c-1\right|=5\Rightarrow\left[{}\begin{matrix}c=6\\c=-4\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}3x-4y+6=0\\3x-4y-4=0\end{matrix}\right.\)

NV
30 tháng 4 2019

Do tính chất của đường tròn nên luôn có 2 đường thẳng đối xứng nhau qua tâm đường tròn thỏa mãn điều kiện bài toán, kiểu như trên hình, 2 dây cung cắt bởi 2 đường thẳng đối xứng qua tâm luôn dài bằng nhau

Chắc chắn cả 2 đáp án đều đúng, ko cái nào sai cả, nếu trong phương án chọn chỉ có 2 đáp án nằm riêng lẻ thì 1 là đáp án sai, 2 là bạn để ý kĩ lại dấu của 2 đáp án coi, có khi họ cho khác đi 1 chút xíu

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

26 tháng 9 2021

(C) : (x - 1)2 + (y + 2)2 = 9 

Vậy (C) có tâm I (1 ; - 2) và bán kính R = 3

Qua phép đối xứng qua trục Oy, tâm I biến thành I' (- 1 ; - 2)

Phương trình ảnh của (C)

(x + 1)2 + (y + 2)2 = 9