1 | 5 | |||||
7 | 7 | |||||
4 | 3 | |||||
4 | 3 | |||||
4 | 3 |
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{2}{3}-4\cdot\dfrac{5}{4}=\dfrac{2}{3}-5=-\dfrac{13}{3}\)
b: \(B=\dfrac{-2+5}{6}\cdot11-7=\dfrac{11}{2}-7=-\dfrac{3}{2}\)
c: \(=1+\dfrac{2}{3}\cdot\dfrac{1}{2}+\dfrac{27}{4}+5-1\)
\(=\dfrac{1}{3}+\dfrac{27}{4}+5=\dfrac{145}{12}\)
d: \(D=\dfrac{2}{3}\cdot\dfrac{2}{5}-\dfrac{1}{5}\cdot\dfrac{1}{6}=\dfrac{4}{15}-\dfrac{1}{30}=\dfrac{7}{30}\)
\(B=\dfrac{4}{1\times3}+\dfrac{4}{3\times5}+\dfrac{4}{5\times7}+...+\dfrac{4}{47\times49}+\dfrac{4}{49\times51}\)
\(=2\times\left(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+...+\dfrac{2}{47\times49}+\dfrac{2}{49\times51}\right)\)
\(=2\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{47}-\dfrac{1}{49}+\dfrac{1}{49}-\dfrac{1}{51}\right)\)
\(=2\times\left(1-\dfrac{1}{51}\right)\)
\(=2\times\dfrac{50}{51}\)
\(=\dfrac{100}{51}\)
A=\([\)\(\frac{2}{7}\)\(\times\)(\(\frac{1}{4}-\frac{1}{3}\))\(]\)\(\div\)\([\)(\(\frac{2}{7}\times\)(\(\frac{3}{9}-\frac{2}{5}\))\(]\)
=(\(\frac{2}{7}\times\)\(\frac{-1}{12}\))\(\div(\)\(\frac{2}{7}\times\)\(\frac{-1}{15}\))
=\(\frac{-1}{42}\)\(\div\)\(\frac{-2}{35}\)
=\(\frac{-1}{42}\)\(\times\)\(\frac{35}{-2}\)
=\(\frac{5}{12}\)
a, \(A=\dfrac{1}{3}.\dfrac{-6}{-3}.\dfrac{-9}{10}.\dfrac{-13}{36}\)
\(A=\dfrac{1.\left(-6\right).\left(-9\right).\left(-13\right)}{3.13.10.36}\)
\(A=\dfrac{-1}{10.2}\)
\(A=\dfrac{-1}{20}\)
b, \(B=\dfrac{-1}{3}.\dfrac{-15}{17}.\dfrac{34}{45}\)
\(B=\dfrac{\left(-1\right).\left(-15\right).34}{3.17.45}\)
\(B=\dfrac{2}{3.3}\)
\(B=\dfrac{2}{9}\)
c, \(C=\dfrac{1}{3}.\dfrac{4}{5}+\dfrac{1}{3}.\dfrac{6}{5}+\dfrac{2}{3}\)
\(C=\dfrac{1}{3}.\left(\dfrac{4}{5}+\dfrac{6}{5}\right)+\dfrac{2}{3}\)
\(C=\dfrac{1}{3}.2+\dfrac{2}{3}\)
\(C=\dfrac{2}{3}+\dfrac{2}{3}\)
\(C=\dfrac{4}{3}\)
d, \(D=\dfrac{-5}{6}.\dfrac{4}{19}+\dfrac{-7}{12}.\dfrac{4}{19}-\dfrac{40}{57}\)
\(D=\dfrac{4}{19}.\left(\dfrac{-5}{6}+\dfrac{-7}{12}\right)-\dfrac{40}{57}\)
\(D=\dfrac{4}{19}.\dfrac{-17}{12}-\dfrac{40}{57}\)
\(D=\dfrac{-17}{57}-\dfrac{40}{57}\)
\(D=\dfrac{-57}{57}=-1\)
e, \(E=\dfrac{3}{7}.\dfrac{9}{26}-\dfrac{1}{14}.\dfrac{1}{13}-\dfrac{1}{7}\)
\(E=\dfrac{3}{7}.\dfrac{9}{26}-\left(\dfrac{1}{14}.\dfrac{1}{13}+\dfrac{1}{7}\right)\)
\(E=\dfrac{3}{7}.\dfrac{9}{26}-\left(\dfrac{1}{182}+\dfrac{1}{7}\right)\)
\(E=\dfrac{3}{7}.\dfrac{9}{26}-\dfrac{27}{182}\)
\(E=\dfrac{27}{182}-\dfrac{27}{182}\)
\(E=0\)
a: \(=\dfrac{-3}{7}\left(\dfrac{5}{9}+\dfrac{4}{9}\right)+2+\dfrac{3}{7}=2\)
b: \(=-\dfrac{5}{7}:\left(24-\dfrac{166}{7}\right)+\dfrac{37}{3}\)
\(=-\dfrac{5}{7}:\dfrac{2}{7}+\dfrac{37}{3}=\dfrac{-5}{2}+\dfrac{37}{3}=\dfrac{59}{6}\)
c: \(=4-\dfrac{32}{27}\cdot\dfrac{-27}{8}=4+4=8\)
d: \(=\dfrac{28}{15}\cdot\dfrac{3}{4}-\dfrac{11+5}{20}\cdot\dfrac{5}{7}\)
\(=\dfrac{7}{5}-\dfrac{6}{20}\cdot\dfrac{5}{7}=\dfrac{29}{35}\)
\(\dfrac{1}{2\cdot5}+\dfrac{1}{3\cdot5}+\dfrac{1}{3\cdot7}+\dfrac{1}{4\cdot7}+...+\dfrac{1}{9\cdot19}+\dfrac{1}{10\cdot19}=\dfrac{3+2}{2.3.5}+\dfrac{4+3}{3\cdot4\cdot7}+...+\dfrac{10+9}{9\cdot10\cdot19}=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9.10}=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}=\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{2}{5}\)
a) $\frac{5}{2} \times \frac{4}{3} + \frac{1}{3} = \frac{{10}}{3} + \frac{1}{3} = \frac{{11}}{3}$
b) $\frac{7}{3} - \frac{2}{3}:\frac{5}{7} = \frac{7}{3} - \frac{2}{3} \times \frac{7}{5} = \frac{7}{3} - \frac{{14}}{{15}} = \frac{{35}}{{15}} - \frac{{14}}{{15}} = \frac{{21}}{{15}} = \frac{7}{5}$
c) $\frac{3}{4} \times \left( {\frac{5}{2} - \frac{3}{2}} \right) = \frac{3}{4} \times 1 = \frac{3}{4}$
ứtfgxvc