Cho tam giác ABC vuông tại A. Đường cao AH, đường phân giác CD. Kẻ AI vuông góc với CD ( I thuộc CD), AI cắt BC tại E, gọi K là giao điểm của AH và CD.
a. Chứng minh: CAE cân
b. Chứng minh: DA = ED và DE song song với AH
c. Chứng minh KE vuông góc với AC
a) Xét tam giác \(CAE\) có \(CD\) vừa là trung tuyến, vừa là đường cao ứng với cạnh \(AE\) suy ra tam giác \(CAE\) cân tại \(C\).
b) tam giác \(CAE\) cân tại \(C\) suy ra \(CD\) là trung trực của cạnh \(AE\)
suy ra \(DA=ED\), \(CA=CE\).
Xét tam giác \(CDA\) và tam giác \(CDE\):
\(CD\) cạnh chung
\(CA=CE\)
\(DA=DE\)
suy ra \(\Delta CDA=\Delta CDE\) (c.c.c)
\(\Rightarrow\widehat{CED}=\widehat{CAD}=90^o\)
suy ra \(DE\) vuông góc với \(BC\)
do đó \(DE\) song song với \(AH\).
c) Gọi \(L\) là giao điểm của \(KD\) và \(AE\).
Xét tam giác \(AKL\) và tam giác \(EDL\):
\(\widehat{ALK}=\widehat{ELD}\) (đối đỉnh)
\(AL=LE\)
\(\widehat{KAL}=\widehat{DEL}\) (vì \(DE//AK\))
suy ra tam giác \(AKL\) và tam giác \(EDL\) bằng nhau (g.c.g)
\(\Rightarrow KL=LD\)
Tứ giác \(AKED\) có hai đường chéo cắt nhau tại trung điểm mỗi đường nên \(AKED\) là hình bình hành.
Suy ra \(KE//AD\)
do đó \(KE\) vuông góc với \(AC\).