Tìm x,y
-3x=4y,6y=72 va x-2y+3z=-48
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này ở violympic toán mà
Đề là như thế này mới đúng
Cho -3x=4y;6y=7z;x-2y+3z=-48.Khi đó x+y+z=-33
Violympic vòng 10 mà mk được 300 điểm k mk nha
\(-3x=4y\Rightarrow\frac{x}{4}=\frac{y}{-3}\)\(\Rightarrow\frac{x}{-28}=\frac{y}{21}\)
\(6y=7z\Rightarrow\frac{y}{7}=\frac{z}{6}\)\(\Rightarrow\frac{y}{21}=\frac{z}{18}\)
=> \(\frac{x}{-28}=\frac{y}{21}=\frac{z}{18}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{-28}=\frac{y}{21}=\frac{z}{18}=\frac{x-2y+3z}{-28-42+54}=\frac{-48}{-16}=3\)
\(\Rightarrow x=-84;y=63;z=54\)
-3x=4y suy ra x/4=y/-3 suy ra x/-28=y/21
6y=7z suy ra y/7=z/6 suy ra y/21=z/18
làm và điều kì diễu sẽ xảy ra
nhớ kich cho mình
-3x = 4y; 6y = 7z và x - 2y + 3z = -48
=> x=-84
y=63
z=54
nha bạn chúc bạn học tốt nha
-3x = 4y ; 6y = 7z và x - 2y + 3z = 48
=> x = -84
y = 63
z = 54
-HT-
\(\left(-3\right)x=4y\)
\(\Rightarrow\frac{x}{4}=\frac{y}{-3}\Rightarrow\frac{x}{4.7}=\frac{y}{\left(-3\right).7}\Rightarrow\frac{x}{28}=\frac{y}{-21}\left(1\right)\)
\(6y=7z\)
\(\Rightarrow\frac{y}{7}=\frac{z}{6}\Rightarrow\frac{y}{7.\left(-3\right)}=\frac{z}{\left(-3\right).6}\Rightarrow\frac{y}{-21}=\frac{z}{-18}\left(2\right)\)
Từ 1 và 2
\(\Rightarrow\frac{x}{28}=\frac{y}{-21}=\frac{z}{-18}\)
\(\Rightarrow\frac{x}{28}=\frac{2y}{-42}=\frac{3z}{-54}\)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\frac{x}{28}=\frac{2y}{-42}=\frac{3z}{-54}=\frac{x-2y+3z}{28-\left(-42\right)+\left(-54\right)}=-3\)
=> x = -84
y = 63
z = 162
=> x + y + z = 141
Áp dụng tính chất dãy tỉ số bawnhf nhau là ra mà bạn
Giải:
Ta có: \(-3x=4y\Rightarrow\frac{x}{4}=\frac{y}{-3}\Rightarrow\frac{x}{28}=\frac{y}{-21}\)
\(6y=7z\Rightarrow\frac{y}{7}=\frac{z}{6}\Rightarrow\frac{y}{-21}=\frac{z}{-18}\)
\(\Rightarrow\frac{x}{28}=\frac{y}{-21}=\frac{z}{-18}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{28}=\frac{y}{-21}=\frac{z}{-18}=\frac{2y}{-42}=\frac{3z}{-54}=\frac{x-2y+3z}{28+42-54}=\frac{-48}{16}=-3\)
+) \(\frac{x}{28}=-3\Rightarrow x=-84\)
+) \(\frac{y}{-21}=-3\Rightarrow y=63\)
+) \(\frac{z}{-18}=-3\Rightarrow z=54\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(-84;63;54\right)\)
3: 10x=6y=5z
\(\Leftrightarrow\dfrac{10x}{30}=\dfrac{6y}{30}=\dfrac{5z}{30}\)
hay x/3=y/5=z/6
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y-z}{3+5-6}=\dfrac{24}{2}=12\)
Do đó: x=36; y=60; z=72
4: Ta có: 9x=3y=2z
nên \(\dfrac{9x}{18}=\dfrac{3y}{18}=\dfrac{2z}{18}\)
hay x/2=y/6=z/9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{6}=\dfrac{z}{9}=\dfrac{x-y+z}{2-6+9}=\dfrac{50}{5}=10\)
Do đó: x=20; y=60; z=90
\(-3x=4y\) \(\Rightarrow\)\(\frac{x}{4}=\frac{y}{-3}\)
\(6y=7z\) \(\Rightarrow\)\(\frac{y}{7}=\frac{z}{6}\)
suy ra: \(\frac{x}{28}=\frac{y}{-21}=\frac{z}{-18}\)
hay \(\frac{x}{28}=\frac{2y}{-42}=\frac{3z}{-54}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{28}=\frac{2y}{-42}=\frac{3z}{-54}=\frac{x-2y+3z}{28+42-54}=\frac{-48}{16}=-3\)
suy ra: \(x=-84\)
\(y=63\)
\(z=54\)
Vậy....
a) Ta có:
\(\frac{x}{-3}=\frac{y}{7}\Rightarrow\frac{x}{6}=\frac{y}{-14}.\)
\(\frac{y}{-2}=\frac{z}{5}\Rightarrow\frac{y}{-14}=\frac{z}{35}.\)
=> \(\frac{x}{6}=\frac{y}{-14}=\frac{z}{35}.\)
=> \(\frac{-2x}{-12}=\frac{4y}{-56}=\frac{5z}{175}\) và \(-2x-4y+5z=146.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{-2x}{-12}=\frac{4y}{-56}=\frac{5z}{175}=\frac{-2x-4y+5z}{\left(-12\right)-\left(-56\right)+175}=\frac{146}{219}=\frac{2}{3}.\)
\(\left\{{}\begin{matrix}\frac{x}{6}=\frac{2}{3}\Rightarrow x=\frac{2}{3}.6=4\\\frac{y}{-14}=\frac{2}{3}\Rightarrow y=\frac{2}{3}.\left(-14\right)=-\frac{28}{3}\\\frac{z}{35}=\frac{2}{3}\Rightarrow z=\frac{2}{3}.35=\frac{70}{3}\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(4;-\frac{28}{3};\frac{70}{3}\right).\)
Chúc bạn học tốt!
a) Có: \(\frac{x}{-3}=\frac{y}{7};\frac{y}{-2}=\frac{z}{5}\Rightarrow\frac{x}{6}=\frac{y}{-14}=\frac{z}{35}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{-14}=\frac{z}{35}=\frac{-2x-4y+5z}{\left(-2\right)\cdot6-4\cdot\left(-14\right)+5\cdot35}=\frac{146}{219}=\frac{2}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{6}=\frac{2}{3}\Rightarrow x=\frac{2}{3}\cdot6=4\\\frac{y}{-14}=\frac{2}{3}\Rightarrow y=\frac{2}{3}\cdot\left(-14\right)=\frac{-28}{3}\\\frac{z}{35}=\frac{2}{3}\Rightarrow z=\frac{2}{3}\cdot35=\frac{70}{3}\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(4;\frac{-28}{3};\frac{70}{3}\right)\)
b) Có: \(-3x=4y;6y=7z\Rightarrow\frac{x}{4}=\frac{y}{-3};\frac{y}{7}=\frac{z}{6}\Rightarrow\frac{x}{28}=\frac{y}{-21}=\frac{z}{-18}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{28}=\frac{y}{-21}=\frac{z}{-18}=\frac{x-2y+3z}{28-2\cdot\left(-21\right)+3\cdot\left(-18\right)}=\frac{-48}{16}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{28}=-3\Rightarrow x=\left(-3\right)\cdot28=-84\\\frac{y}{-21}=-3\Rightarrow y=\left(-3\right)\cdot\left(-21\right)=63\\\frac{z}{-18}=-3\Rightarrow z=\left(-3\right)\cdot\left(-18\right)=54\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(-84;63;54\right)\)
Vì 6y=72 => y=12
Vì -3x=4y => x=12.4/(-3)=-16
nhưng tớ cần giải từng bước ra