Tính tổng : 1+32+34+.....+3100 (ra 1 kết quả nhất định)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+3^2+3^4+...+3^{98}+3^{100}\)
\(3^2\cdot A=3^2+3^4+3^6+...+3^{100}+3^{102}\)
\(9A-A=\left(3^2+3^4+3^6+...+3^{100}+3^{102}\right)-\left(1+3^2+3^4+...+3^{98}+3^{100}\right)\)
\(8A=3^{102}-1\)
\(\Rightarrow A=\dfrac{3^{102}-1}{8}\)
A = 1 + 32 + 34 + ..... + 398 + 3100
3A = 3. ( 1 + 32 + 34 + ..... + 398 + 3100 )
3A = 3. 1 + 3. 32 + 3. 34 + ..... + 3. 398 + 3. 3100
3A = 32 + 33 + 34 + ..... + 3100 + 3101
3A - A = ( 32 + 33 + 34 + ..... + 3100 + 3101 ) - ( 1 + 32 + 34 + ..... + 398 + 3100 )
2A = 3101 - 1
A = ( 3101 - 1 ) : 2
Lời giải:
$A=1+32+34+....+398+400$
Từ $32$ đến $400$ có số số hạng là:
$(400-32):2+1=185$ (số hạng)
$32+34+....+398+400=(400+32).185:2=39960$
$\Rightarrow A=1+39960=39961$
a: \(A=2019\cdot2021=2020^2-1\)
\(B=2020^2\)
Do đó: A<B
Tham khảo
Ta có: 3A = 3.(1+3+32+33+...+399+3100)(1+3+32+33+...+399+3100)
3A = 3+32+33+...+3100+31013+32+33+...+3100+3101
Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)(3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)
2A = 3101−13101−1
⇒⇒ A = 3101−123101−12
Vậy A = 3101−12
\(A=1-3+3^2-3^3+3^4-...-3^{98}-3^{99}+3^{100}\\ 3A=3-3^2+3^3-3^4-...-3^{98}+3^{99}-3^{100}+3^{101}\\ 3A-A=3^{101}-1\\ \Rightarrow A=\dfrac{3^{101}-1}{2}\)
Ta có: 3A = 3.(1+3+32+33+...+399+3100)
3A = 3+32+33+...+3100+3101
Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)
2A = 3101−1
⇒ A = 3101−1
2
Vậy A = 3101−1
2
A = 1 - 3 + 32 - 33 + 34 - ... + 398 - 399 + 3100
3A = 3 - 32 + 33 - 34+ 35 - ... + 399 - 3100 + 3101
3A + A = 3 - 32+ 33-34+35 -...+399 - 3100 + 3101 + 1 - 3 +...-399+3100
4A = 3101 + 1
A = \(\dfrac{3^{101}+1}{4}\)
\(A=1+3^2+3^4+...+3^{102}\)
\(9A=3^2+3^4+...+3^{102}+3^{104}\)
\(\Rightarrow9A-A=3^{104}-1\)
\(\Rightarrow8A=3^{104}-1\)
\(\Rightarrow A=\dfrac{3^{104}-1}{8}\)
\(=1+\left(3^2+3^4+...+3^{100}\right).\)
Đặt biểu thức trong ngoặc là B
\(9B=3^4+3^6+...+3^{102}\)
\(B=\frac{9B-B}{8}=\frac{3^{102}-3^2}{8}\)
\(A=1+B=1+\frac{3^{102}-3^2}{8}=\frac{8+3^2\left(3^{100}-1\right)}{8}\)
Đặt A =\(1+3^2+3^4+...+3^{100}\)
\(9A=3^2+3^4+3^6+...+3^{102}\)
\(9A-A=\left(3^2+3^4+3^6+...+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
\(8A=3^{102}-1\)
\(A=\frac{3^{102}-1}{8}\)