Cơ hội nhận điểm hỏi đáp đợt 1 .
tìm các số tự nhiên x hợp lí
12 < x < 88
giải nhất : 3 k
+ ) nhì : 2 k
+ ) ba : 1 k
Chúc các bạn may mắn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2+22+23+24+....+220
S=(2+22+23+24)+24x(2+22+23+24)+....+216x(2+22+23+24)
S=30+24x30+....+216x30
M=30x(1+24+.....+216)
mà 30 chia hết cho 5
=>30x(1+24+......+216) chia hết cho 5
=>M chia hết cho 5
Đ/S : 30
(x-1)(2-x)=2
<=>\(2x-2-x^2+x=2< =>x^2-3x+4=0\)
<=>\(x^2-2.\frac{3}{2}x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)
=>vô nghiệm
( 20 : 5 x 4 ) + 56 x 7
=( 4x4 ) + 56 x 7
= 16 + 56 x7
= 16 +392
= 408
23 x 987 + 875 x 69 + 25 - 30
= 22701 + 60375 + 25 - 30
= 83076 + 25 - 30
= 83101 - 30
= 83071
23 x 12 + 25 x 13 + 99
= 276 + 325 + 99
= 700
vậy 23 x 12 + 25 x 13 + 99 = 700
1.
\(5=3xy+x+y\ge3xy+2\sqrt{xy}\)
\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+5\right)\le0\Rightarrow xy\le1\)
\(P=\dfrac{\left(x+1\right)\left(x^2+1\right)+\left(y+1\right)\left(y^2+1\right)}{\left(x^2+1\right)\left(y^2+1\right)}-\sqrt{9-5xy}\)
\(P=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy+x+y+2}{x^2y^2+\left(x+y\right)^2-2xy+1}-\sqrt{9-5xy}\)
Đặt \(xy=a\Rightarrow0< a\le1\)
\(P=\dfrac{\left(5-3a\right)^3-3a\left(5-3a\right)+\left(5-3a\right)^2-2a+5-3a+2}{a^2+\left(5-3a\right)^2-2a+1}-\sqrt{9-5a}\)
\(P=\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{2}.2\sqrt{9-5a}\)
\(P\ge\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{4}\left(4+9-5a\right)\)
\(P\ge\dfrac{-29a^3+161a^2-277a+145}{4\left(5a^2-16a+13\right)}=\dfrac{\left(1-a\right)\left(29a^2-132a+145\right)}{4\left(5a^2-16a+13\right)}\)
\(P\ge\dfrac{\left(1-a\right)\left[29a^2+132\left(1-a\right)+13\right]}{4\left(5a^2-16a+13\right)}\ge0\)
\(P_{min}=0\) khi \(a=1\) hay \(x=y=1\)
Hai phân thức của P rất khó làm gọn bằng AM-GM hoặc Cauchy-Schwarz (nó hơi chặt)
2.
Đặt \(A=9^n+62\)
Do \(9^n⋮3\) với mọi \(n\in Z^+\) và 62 ko chia hết cho 3 nên \(A⋮̸3\)
Mặt khác tích của k số lẻ liên tiếp sẽ luôn chia hết cho 3 nếu \(k\ge3\)
\(\Rightarrow\) Bài toán thỏa mãn khi và chỉ khi \(k=2\)
Do tích của 2 số lẻ liên tiếp đều không chia hết cho 3, gọi 2 số đó lần lượt là \(6m-1\) và \(6m+1\)
\(\Leftrightarrow\left(6m-1\right)\left(6m+1\right)=9^n+62\)
\(\Leftrightarrow36m^2=9^n+63\)
\(\Leftrightarrow4m^2=9^{n-1}+7\)
\(\Leftrightarrow\left(2m\right)^2-\left(3^{n-1}\right)^2=7\)
\(\Leftrightarrow\left(2m-3^{n-1}\right)\left(2m+3^{n-1}\right)=7\)
Pt ước số cơ bản, bạn tự giải tiếp
Vì x > 12 và < 88
nên ta phải có 1 tập hợp có phần tử lớn hơn 12 và < 88
Tập hợp là
\(\left\{13;14;15;...;87\right\}\)
x thuộc TH này
\(x\in\left\{13;14;15;...87\right\}\)
ĐS