tìm chữ số tận cùng của các biểu thức sau:
a)23!
b)37!-24!
c) 2.4.6......1998 - 1.3.5..........1997
d)2007.2009.2011.2013.2015.2017 - 2002.2004.2006.2008
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)37! - 24!
=1.2.3.4...10...36.37-1.2.3.4....10....23.24
=....0-....0
=....0
Vậy 37! - 24! có tận cùng là 0
A = 1 × 6 + 6 × 9 + 11 × 16 + 16 × 19 + 21 × 26
= 6 + 54 + 176 + 304 + 546
= 1086
Vậy chữ số tận cùng của A là 6
A=(...6)+(...4)+(.....6)+(....4)+(....6)
A=(....6)
vậy chữ số tận cùng của A bằng 6
Lời giải:
$A=3-3^2+3^3-3^4+....-3^{2010}+3^{2011}$
$3A=3^2-3^3+3^4-3^5+...-3^{2011}+3^{2012}$
$\Rightarrow A+3A=3^{2012}+3$
$\Rightarrow 4A=3^{2012}+3$
$\Rightarrow A=\frac{3^{2012}+3}{4}$
b.
Từ phần a suy ra $4A-3=3^{2012}$
Do đó để $4A-3=81^x$ thì $3^{2012}=81^x$
$\Rightarrow 81^{503}=81^x$
$\Rightarrow x=503$
c.
$A=3+(-3^2+3^3-3^4)+(3^5-3^6+3^7)+(-3^8+3^9-3^{10})+...+(3^{2009}-3^{2010}+3^{2011})$
$=3+3^2(-1+3-3^2)+3^5(1-3+3^2)+3^8(-1+3-3^2)+...+3^{2009}(1-3+3^2)$
$=3+3^2(-7)+3^5.7+3^8(-7)+...+3^{2009}(-7)$
$=3+7(-3^2+3^5-3^8+....+3^{2009})$
$\Rightarrow A$ chia 7 dư 3.
d.
$4A=3^{2012}+3$
Có: $3^2\equiv -1\pmod {10}$
$\Rightarrow 3^{2012}=(3^2)^{1006}\equiv 1\pmod {10}$
$\Rightarrow 3^{2012}+3\equiv 4\pmod {10}$
$\Rightarrow 4A$ có tận cùng là 4
$\Rightarrow A$ có tận cùng là 1.
Vì số lẻ nhân với số có tận cùng là 5 sẽ bằng tận cùng là 5 nên 1.3.5...............2045 có tận cùng là 5
bạn tách dãy thành hiệu của tổng các lũy thừa có số mũ chẵn và tổng của các số mũ lẻ là xong ;)
\(4^{n+3}+4^{n+2}-4^{n+1}-4^n=4^2\left(4^{n+1}+4^n\right)-\left(4^{n+1}+4^n\right)\)
\(=\left(4^2-1\right)\left(4^{n+1}+4^n\right)=15\left(4^{n+1}+4^n\right)\)
Do \(n\) và \(n+1\) là 2 số tự nhiên liên tiếp nên luôn khác tính chẵn lẻ
Mà \(4^k\) tận cùng bằng 4 nếu k lẻ, tận cùng bằng 6 nếu k chẵn
\(\Rightarrow4^{n+1}\) và \(4^n\) luôn có 1 số tận cùng bằng 4, một số tận cùng bằng 6
\(\Rightarrow4^{n+1}+4^n\) tận cùng bằng 0
\(\Rightarrow4^{n+3}+4^{n+2}-4^{n+1}-4^n\) luôn có tận cùng bằng 0
Ta có: 23! = 1.2.3.4.5.6......22.23
= 1.(2.5).3.4.....23
= 1.10.3.4.6....23
=.....0
Vậy 23! có tận cùng bằng 0