K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2016

Ta có: 23! = 1.2.3.4.5.6......22.23

               =  1.(2.5).3.4.....23

              = 1.10.3.4.6....23

              =.....0

Vậy 23! có tận cùng bằng 0

          

21 tháng 10 2015

 

b)37! - 24!

=1.2.3.4...10...36.37-1.2.3.4....10....23.24

=....0-....0

=....0

Vậy 37! - 24! có tận cùng là 0

 

30 tháng 9 2023

A = 1 × 6 + 6 × 9 + 11 × 16 + 16 × 19 + 21 × 26

= 6 + 54 + 176 + 304 + 546

= 1086

Vậy chữ số tận cùng của A là 6

1 tháng 10 2023

A=(...6)+(...4)+(.....6)+(....4)+(....6)

A=(....6)

vậy chữ số tận cùng của A bằng 6

AH
Akai Haruma
Giáo viên
6 tháng 7

Lời giải:

$A=3-3^2+3^3-3^4+....-3^{2010}+3^{2011}$

$3A=3^2-3^3+3^4-3^5+...-3^{2011}+3^{2012}$

$\Rightarrow A+3A=3^{2012}+3$

$\Rightarrow 4A=3^{2012}+3$

$\Rightarrow A=\frac{3^{2012}+3}{4}$

b.

Từ phần a suy ra $4A-3=3^{2012}$

Do đó để $4A-3=81^x$ thì $3^{2012}=81^x$

$\Rightarrow 81^{503}=81^x$

$\Rightarrow x=503$

c.

$A=3+(-3^2+3^3-3^4)+(3^5-3^6+3^7)+(-3^8+3^9-3^{10})+...+(3^{2009}-3^{2010}+3^{2011})$

$=3+3^2(-1+3-3^2)+3^5(1-3+3^2)+3^8(-1+3-3^2)+...+3^{2009}(1-3+3^2)$

$=3+3^2(-7)+3^5.7+3^8(-7)+...+3^{2009}(-7)$

$=3+7(-3^2+3^5-3^8+....+3^{2009})$

$\Rightarrow A$ chia 7 dư 3.

d.

$4A=3^{2012}+3$

Có: $3^2\equiv -1\pmod {10}$

$\Rightarrow 3^{2012}=(3^2)^{1006}\equiv 1\pmod {10}$

$\Rightarrow 3^{2012}+3\equiv 4\pmod {10}$

$\Rightarrow 4A$ có tận cùng là 4

$\Rightarrow A$ có tận cùng là 1.

23 tháng 2 2016

Vì số lẻ nhân với số có tận cùng là 5 sẽ bằng tận cùng là 5 nên 1.3.5...............2045 có tận cùng là 5

23 tháng 2 2016

kết bạn với tớ nhé đi

10 tháng 12 2014

bạn tách dãy thành hiệu của tổng các lũy thừa có số mũ chẵn và tổng của các số mũ lẻ là xong ;)

NV
23 tháng 7 2021

\(4^{n+3}+4^{n+2}-4^{n+1}-4^n=4^2\left(4^{n+1}+4^n\right)-\left(4^{n+1}+4^n\right)\)

\(=\left(4^2-1\right)\left(4^{n+1}+4^n\right)=15\left(4^{n+1}+4^n\right)\)

Do \(n\) và \(n+1\) là 2 số tự nhiên liên tiếp nên luôn khác tính chẵn lẻ

Mà \(4^k\) tận cùng bằng 4 nếu k lẻ, tận cùng bằng 6 nếu k chẵn

\(\Rightarrow4^{n+1}\) và \(4^n\) luôn có 1 số tận cùng bằng 4, một số tận cùng bằng 6

\(\Rightarrow4^{n+1}+4^n\) tận cùng bằng 0

\(\Rightarrow4^{n+3}+4^{n+2}-4^{n+1}-4^n\) luôn có tận cùng bằng 0

23 tháng 7 2021

cô giải thích rỏ hơn được không ạ

 

5 tháng 12 2018

Giúp mình với mình đang cần gấp