Tìm GTNN của:
\(A=\frac{1+x^4}{x\left(x-1\right)\left(x+1\right)}\) Với \(x>1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có : \(A=\frac{\left(x+4\right)\left(x+9\right)}{x}=\frac{x^2+13x+36}{x}=x+\frac{36}{x}+13\)
Áp dụng bđt Cauchy : \(x+\frac{36}{x}\ge2\sqrt{x.\frac{36}{x}}=12\)
\(\Rightarrow A\ge25\)
Vậy Min A = 25 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{36}{x}\end{cases}\) \(\Leftrightarrow x=6\)
2. \(B=\frac{\left(x+100\right)^2}{x}=\frac{x^2+200x+100^2}{x}=x+\frac{100^2}{x}+200\)
Áp dụng bđt Cauchy : \(x+\frac{100^2}{x}\ge2\sqrt{x.\frac{100^2}{x}}=200\)
\(\Rightarrow B\ge400\)
Vậy Min B = 400 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{100^2}{x}\end{cases}\) \(\Leftrightarrow x=100\)
a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3
MInA=3<=>x=y=z=1
b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)
Lời giải :
\(A=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\)
\(A=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)
Áp dụng BĐT Cô-si:
\(y-1=1\cdot\left(y-1\right)\le\frac{\left(1+y-1\right)^2}{4}=\frac{y^2}{4}\)
Do đó \(\frac{x^2}{y-1}\ge\frac{x^2}{\frac{y^2}{4}}=\frac{4x^2}{y^2}\)
Chứng minh tương tự ta cũng có \(\frac{y^2}{x-1}\ge\frac{4y^2}{x^2}\)
Cộng theo vế 2 BĐT rồi tiếp tục Cô-si ta được :
\(A\ge\frac{4x^2}{y^2}+\frac{4y^2}{x^2}\ge2\sqrt{\frac{16\cdot x^2y^2}{x^2y^2}}=8\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=2\)
\(A=\frac{\left(4x+1\right)\left(4+x\right)}{x}=\frac{4x^2+17x+4}{x}=4x+17+\frac{4}{x}=17+4\left(x+\frac{1}{x}\right)\)
Bạn tự chứng minh được \(x>0\Rightarrow x+\frac{1}{x}\ge2\)
Khi đó \(A\ge17+4.2=17+8=25\)
Dấu "=" xảy ra khi: \(x=\frac{1}{x}\Rightarrow x^2=1\Rightarrow x=1\left(x>0\right)\)
Vậy \(A_{min}=25\Leftrightarrow x=1\) (x > 0)
tìm min chứ ai bảo tính
=1+x^4/x.((x-1)(x+1))
=1+x^4/x.(x^2-1)
=1+x^4/x^3-x