Chia một số tự nhiên cho 60 dư 31.Nếu đem chia số đó cho 12 thì được thương là 17.Tìm số dư
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a là số tự nhiên cần tìm
a = 60.q + 31
a = 12.17 + r (0≤ r < 12)
ta lại có 60.q ⋮ 12 và 31 chia 12 dư 7
Vậy r = 7
Vậy a = 12.17+7= 211
_ Gọi số tự nhiên cần tìm là : \(a.\)
\(a=60\times q+31\)
\(a=12\times17+r\) \(\left(0\le r< 12\right).\)
_ Ta lại có \(60\times q\)\(⋮\)\(12\)và \(31\div12\)dư \(7.\)
- Vậy \(r=7.\)
\(\Rightarrow a=12\times17+7\)
\(=211.\)
_ Vậy số tự nhiên đó là \(211.\)
1)
Ta thấy: 67 – 64 = 3
Thương là: (38-14):3 = 8
Số đó là: 8 x 64 + 38 = 550
2)số tự nhiên A chia cho 60 dư 31 nghĩa là A = 60q + 31 = 12.5q + 12.2 + 7 ( q ∈ N )
A = 12 ( 5q + 2 ) + 7 mà nếu A chia cho 12 thì được thương là 17 nên 5q + 2 = 17 ⇔ k = 3 thỏa mãn điều kiện, thay lên trên ta được A = 211
Gọi a là số tự nhiên cần tìm
a = 60.q + 31
a = 12.17 + r (0 ≤ r < 12)
Ta lại có 60.q chia hết 12 và 31 chia 12 dư 7
Do đó r = 7
Vậy a = 12.17+7= 211
Gọi A là số tự nhiên cần tìm
A = 60. q + 31
A = 12. 17 + r ( 0 < r < 12 )
Ta có: 60. q chia hết cho 12 và 31 : 12 dư 7
Vây r = 7
Số dư là 7
Gọi a là thương của phép chia thứ 1
Gọi r là số dư của phép chia thứ 2
Từ phép chia thứ nhất ta có : a x 60 + 31 (1)
Từ phép chia thứ hai ta có : 12 x 17 + r (2)
Trong đó a, r là STN và 0 < r < 12
Từ (1) ta có : a x 60 + 31 = a x 5 x 12 + 12.2 +7 = 12 x ( a x 5 + 2 ) + 7
Từ (2) ta có : 12 x 17 + r = 12 x ( a x 5 + 2 ) + 7
Vậy r = 7
Đ/S : 7