K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2016

A = 1+2+22+...+210

=> 2A = 2+22+23+...+211

=> 2A - A = (2+22+23+...+211) - (1+2+22+...+210)

=> A = 211 - 1

B = 1+3+32+...+310

=> 3B = 3+32+33+...+311

=> 3B - B = (3+32+33+...+311) - (1+3+32+...+310)

=> 2B = 311 - 1

=> B = \(\frac{3^{11}-1}{2}\)

24 tháng 9 2016

A = 1 + 2 1 + 2 2 + 2 3 + ... + 2 9 + 2 10

2A = 2 + 2 2 + 2 3 + 2 4 + ... + 2 10  + 2 11

2A - A = ( 2 + 2 2 + 2 3 + 2 4 + ... + 2 10  + 2 11

           - ( 1 + 2 1 + 2 2 + 2 3 + ... + 2 9 + 2 10  )

   A     = 2 11  - 1

   A     = 2047

B = 1 + 3 1 + 3 2 + 3 3 + ... + 3 + 3 10

3B = 3 1 + 3 2 + 3 3 + 3 4 + ... + 3 10  + 3 11

3B - B= ( 3 1 + 3 2 + 3 3 + 3 4 + ... + 3 10  + 3 11 )

            - ( 1 + 3 1 + 3 2 + 3 3 + ... + 3 + 3 10 )

 2B    = 3 11 - 1

B       = \(\frac{3^{11}-1}{2}\)

B = 88573

26 tháng 8 2023

\(A=2^1+2^2+2^3+...+2^{10}\)

\(\Rightarrow2A=2\cdot\left(2+2^2+2^3+...+2^{10}\right)\)

\(\Rightarrow2A=2^2+2^3+...+2^{11}\)

\(\Rightarrow2A-A=\left(2^2+2^3+...+2^{11}\right)-\left(2+2^2+...2^{10}\right)\)

\(\Rightarrow A=2^{11}-2\) 

\(B=3^1+3^2+...+3^{100}\)

\(\Rightarrow3B=3\cdot\left(3+3^2+...+3^{100}\right)\)

\(\Rightarrow3B=3^2+3^3+...+3^{101}\)

\(\Rightarrow3B-B=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)

\(\Rightarrow2B=3^{101}-3\)

\(\Rightarrow B=\dfrac{3^{101}-3}{2}\)

26 tháng 8 2023

phần B thiếu 3 mũ 3 ak

 

16 tháng 10 2017

không biết làm

13 tháng 8 2015

THEO ĐỀ BÀI TA CÓ 

            1^2+2^2+3^2+...+10^2=385

        MÀ     2^2+4^2+....+20^2=2(1^2+2^2+....+10^2)=2.385=770

                         VẬY 2^2+2^4+....+20^2=770

           

10 tháng 1 2022

TL: 770

5 tháng 10 2019

a) \(\left(3^4.57-9^2.21\right):3^5\)

\(=\left(3^4.57-3^4.21\right):3^5\)

\(=\left[3^4\left(57-21\right)\right]:3^5\)

\(=3^4.36:3^5\)

\(=3^4.2^2.3^2:3^5\)

\(=3.4\)

\(=12\)

b) Ta có; \(1^3+2^3+...+9^3=2025\)

\(\Leftrightarrow2^3.\left(1^3+2^3+....+9^3\right)=2^3.2025\)

\(\Leftrightarrow2^3+4^5+...+18^3=16200\)

Khó hiểu quá

25 tháng 8 2020

Bằng nhau

`#3107.101107`

\(A = 2 + 2^2 + 2^3 + ... + 2^{2020} + 2^{2021} + 2^{2022}\)

\(= (2 + 2^2) + (2^3 + 2^4) + ... + (2^{2021} + 2^{2022})\)

\(=2(1+2) + 2^3(1 + 2) + ... + 2^{2021}(1 + 2)\)

\(=(1 + 2)(2 + 2^3 + ... + 2^{2021})\)

\(= 3(2 + 2^3 + ... + 2^{2021})\)

Vì \(3(2 + 2^3 + ... + 2^{2021})\) \(\vdots\) \(3\)

`\Rightarrow A \vdots 3`

Vậy, `A \vdots 3.`

a: 6S=6+6^2+...+6^65

=>5S=6^65-1

=>S=(6^65-1)/5

b: 4S=4+4^2+...+4^401

=>3S=4^101-1

=>S=(4^101-1)/3

c: 9S=3^2+3^4+...+3^104

=>8S=3^104-1

=>S=(3^104-1)/8