Bài 1 :So sánh
a.. 333444 và 444333
b. 19920 và 200315
c. 339 và 1121
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 199^20=1568239201^5
2003^15=8036054027^5
=>199^20<2003^15
b: 3^99=27^33>27^21=11^21
Lời giải:
a.
$199^{20}<200^{20}=(2.100)^{20}=2^{20}.10^{40}=(2^{10})^2.10^{40}< (10^4)^2.10^{40}=10^8.10^{40}=10^{48}$
$2003^{15}> 2000^{15}=(2.10^3)^{15}=2^{15}.10^{45}> 2^{10}.10^{45}> 10^3.10^{45}=10^{48}$
$\Rightarrow 199^{20}< 2003^{15}$
b.
$3^{99}=(3^9)^{11}=19683^{11}$
$11^{21}< 11^{22}=(11^2)^{11}=121^{11}$
Hiển nhiên $19683^{11}> 121^{11}$
$\Rightarrow 3^{99}> 121^{11}> 11^{21}$
1.
a) 8⁵ = (2³)⁵ = 2¹⁵ = 2.2¹⁴
3.4⁷ = 3.(2²)⁷ = 3.2¹⁴
Do 2 < 3 nên 2.2¹⁴ < 3.2¹⁴
Vậy 8⁵ < 3.4⁷
b) Do 63 < 64 nên
63⁷ < 64⁷ (1)
Ta có:
64⁷ = (2⁶)⁷ = 2⁴²
16¹² = (2⁴)¹² = 2⁴⁸
Do 42 < 48 nên 2⁴² < 2⁴⁸
64⁷ < 16¹² (2)
Từ (1) và (2) 63⁷ < 16¹²
c) Do 17 > 16 nên 17¹⁴ > 16¹⁴ (1)
Do 32 > 31 nên 32¹¹ > 31¹¹ (2)
Ta có:
16¹⁴ = (2⁴)¹⁴ = 2⁶⁴
32¹¹ = (2⁵)¹¹ = 2⁵⁵
Do 64 > 55 nên 2⁶⁴ > 2⁵⁵
16¹⁴ > 32¹¹ (3)
Từ (1), (2) và (3) 17¹⁴ > 31¹¹
d) Do 39 < 40 nên 3³⁹ < 3⁴⁰ (1)
Do 20 < 21 nên 11²⁰ < 11²¹ (2)
Ta có:
3⁴⁰ = (3²)²⁰ = 9²⁰
Do 9 < 11 nên 9²⁰ < 11²⁰ (3)
Từ (1), (2) và (3) 3³⁹ < 11²¹
e) Ta có:
72⁴⁵ - 72⁴⁴ = 72⁴⁴.(72 - 1) = 72⁴⁴.71
72⁴⁴ - 72⁴³ = 72⁴³.(72 - 1) = 72⁴³.71
Do 44 > 43 nên 72⁴⁴ > 72⁴³
72⁴⁴.71 > 72⁴³.71
Vậy 72⁴⁵ - 72⁴⁴ > 72⁴⁴ - 72⁴³
a) \(8^5=2^{15};3.4^7=3.2^{14}\) lớn hơn \(2^{15}\)
\(\Rightarrow8^5\) nhỏ hơn \(3.4^7\)
a, Ta có : \(8>7\)
\(\Rightarrow2^{13}.8=2^{16}>2^{13}.7\)
b, Ta có : \(199^{20}< 200^{20}=2^{60}.5^{40}\)
Mà \(2003^{15}>2000^{15}=2^{60}.2^{45}\)
Thấy : \(45>40\)
\(\Rightarrow2000^{15}>200^{20}\)
\(\Rightarrow2003^{15}>199^{20}\)
c, Ta có : \(\left\{{}\begin{matrix}202^{303}=\left(2.101\right)^{3.101}=\left(8.101^3\right)^{101}\\303^{202}=\left(3.101\right)^{2.101}=\left(9.101^2\right)^{101}\end{matrix}\right.\)
Mà \(8.101^3>9.101^2\)
\(\Rightarrow202^{303}>303^{202}\)
a) Ta có: \(2^{16}=2^{13}\cdot8\)
mà \(7< 8\)
nên \(7\cdot2^{13}< 2^{16}\)
b) \(199^{20}=1568239201^5\)
\(2003^{15}=8036054027^5\)
mà \(1568239201< 8036054027\)
nên \(199^{20}< 2003^{15}\)
c) Ta có: \(202^{303}=\left(202^3\right)^{101}\)
\(303^{202}=\left(303^2\right)^{101}\)
mà \(202^3>303^2\)
nên \(202^{303}>303^{202}\)
a, $5^{3} =5\times5\times5=125$
$3^{5} =3\times3\times3=27$
$125>27=>5^{3}>3^{5}$
$3^{2}=3\times3=9$
$2^{3}=2\times2\times2=8$
$9>8=>3^{2}>2^{3}$
$2^{6} =2\times2\times2\times2\times2\times2=64$
$6^{2}=6\times6=36$
$64>36=>2^{6}>6^{2}$
b, $2015\times2017=2015\times(2016+1)=2015\times2016+2015$
$2016^{2}=2016\times2016=2016\times(2015+1)=2016\times2015+2016$
$2015\times2016+2015<2016\times2015+2016=>2015\times2017<2016^{2}$
c, $199^{20}=199^{4\times5}=(199^{4})^{5}= 1568239201^{5}$
$2003^{15}=2003^{3\times5}=(2003^{3})^5 =8036054027^{5}$
$1568239201<8036054027=>199^{20}<2003^{15}$
d, $3^99 =3^{3\times33}=(3^{3})^{33}=27^{33}>27^{21}$
$11^{21}<27^{21}=>3^{99}>11^{21}$
$3^{2n}=9^n$
$2^{3n}=8^n$
$9>8=>3^{2n}>2^{3n}$
So sánh các số sau
a) 53 và 35
53 = 125
35 = 243
=> 53 < 35
32 và 23
32 = 9
23 = 8
=> 32 > 23
26 và 62
26 = 64
62 = 36
=> 26 > 62
b) 2015 x 2017 và 20162
2015 x 2017
= 2015 x ( 2016 + 1 )
= 2015 x 2016 + 2015
20162
= 2016 x 2016
= 2016 x ( 2015 + 1 )
= 2016 x 2015 + 2016
Vì: 2015 < 2016
=> 2015 x 2017 < 20162
c) 19920 và 200315
19920 < 20020 = ( 23 x 52 )20 = 260 x 540
200315 > 200015 = ( 2 x 103 )15 = ( 24 x 53 )15 = 260 x 545
=> 200315 > 19920
d) 399 và 1121
399 = ( 33 )33 = 2733 > 2721
Vì: 27 > 11
=> 2721 > 1121
=> 399 > 1121
32n và 23n
32n = ( 32 )n = 9n
23n = ( 23 )n = 8n
Vì 9 > 8
=> 9n > 8n
=> 32n > 23n
Vậy 32n > 23n
Ta có:
\(5^{75}=\left(5^5\right)^{15}=3125^{15}\)
\(7^{60}=\left(7^4\right)^{15}=2401^{15}\)
Mà: \(3125^{15}>2401^{15}\)
\(\Rightarrow5^{75}>7^{60}\)
_______________
Ta có:
\(3^{39}< 3^{42}\); \(3^{42}=\left(3^6\right)^7=729^7\)
\(11^{21}=\left(11^3\right)^7=1331^7\)
Mà: \(729^7< 1331^7\)
\(\Rightarrow3^{42}< 11^{21}\)
\(\Rightarrow3^{39}< 11^{21}\)
a) \(5^{75}=\left(5^5\right)^{15}=3125^{15}\)
\(7^{60}=\left(7^4\right)^{15}=2401^{15}\)
mà \(2401^{15}< 3125^{15}\)
\(\Rightarrow5^{75}>7^{60}\)
b) \(3^{39}=\left(3^{13}\right)^3=1594323^3;11^{21}=\left(11^7\right)^3=19487171^3\)
mà \(19487171^3>1594323^3\)
\(\Rightarrow3^{39}< 7^{21}\)
a) 536 và 1124
Ta có: 536= (53)12=12512 (1)
1124=(112)12=12112 (2)
Từ (1) và (2) => 536>1124
tương tự.....
Đáp án là :
câu 20 :625 < 1257
câu 21 :536 > 1124
câu 22 :32n < 23n
câu 23 :523 < 6.522
câu 24 :1124 <19920
câu 25 :399 > 112
Bài 1:
D = 5 + 52 + 53+...+ 5100
5.D = 52 + 53+...+5 100 + 5101
5D - D = 5101 - 5
4D = 5101 - 5
D = \(\dfrac{5^{101}-5}{4}\)
Bài 2:
So sánh
a, 544 = (2.33)4 = 24.312
2112 = (3.7)12 = 312.712
Vì 24 < 712 nên 544 < 2112
b, 339 và 1121
339 = (313)3
1121 = (117)3
313 = (32)6.3 = 96.3 < 97 < 117
Vậy 339 < 1121
1) \(D=5+5^2+5^3+...+5^{100}\)
\(\Rightarrow D+1=1+5+5^2+5^3+...+5^{100}\)
\(\Rightarrow D+1=\dfrac{5^{100+1}-1}{5-1}\)
\(\Rightarrow D+1=\dfrac{5^{101}-1}{4}\)
\(\Rightarrow D=\dfrac{5^{101}-1}{4}-1=\dfrac{5^{101}-5}{4}=\dfrac{5\left(5^{100}-1\right)}{4}\)
2)
a) \(21^{12}=\left(21^3\right)^4=9261^4>54^4\Rightarrow54^4< 21^{12}\)
b) \(3^{39}< 3^{40}=\left(3^2\right)^{20}=9^{20}< 11^{20}< 11^{21}\)
\(\Rightarrow3^{39}< 11^{21}\)
c) \(201^{60}=\left(201^4\right)^{15}=\text{1632240801}^{15}\)
\(398^{45}=\left(398^3\right)^{15}=\text{63044792}^{15}< \text{1632240801}^{15}\)
\(201^{60}>398^{45}\)
Ta có:
\(3^{39}< 3^{42}\)
Mà: \(3^{42}=\left(3^2\right)^{21}=9^{21}\)
Lại có: \(9< 11\Rightarrow9^{21}< 11^{21}\)
\(\Rightarrow3^{39}< 11^{21}\)
a, 36=3.3.3.3.3.3=729
63=6.6.6=216
729>216 nên 36>63
b, 2200=22.100=(22)100=4100
4100=4100 nên 4100=2200
c, 333444=3334.111=(3334)111
444333=4443.111=(4443)111
Cả hai số đều cùng có số mũ 111 nên ta so sánh 3334 và 4443
3334=(3.111)4=34.1114=81.1114
4443=(4.111)3=43.1113=64.1113
81.1114>64.1113 nên 333444>444333
a, 36 = (32)3 = 93 > 63 vậy 36 > 63
Các câu khác làm như Lộc
a.. 333444 > 444333
b. 19920 < 200315
c. 339 < 1121
a) \(333^{444}\)
= \(333^{4.111}=\left(333^4\right)^{111}\)
\(444^{333}=444^{3.111}=\left(444^3\right)^{111}\)
vì hai lũy thừa cùng số mũ nên ta so sánh \(333^4\text{ và }444^3\)
ta có : \(333^4=\left(3.111\right)^4=3^4.111^4=81.111^4\)
\(444^3=\left(4.111\right)^3=4^3.111^3=64.111^3\)
Vì \(81.111^4>64.111^3\) nên \(333^{444}>444^{333}\)