Câu 1: Cho tứ diện ABCD có hai mặt ABC và ABD là hai tam giác đều.
a. Chứng minh rằng AB và CD vuông góc với nhau.
b. Gọi M, N, P, P, Q lần lượt là trung điểm của các cạnh AC, BC, BD, DA. Chứng minh rằng tứ giác MNPQ là hình chữ nhật
giúp mk vs ạ!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trung bình của ΔADC
Suy ra: QP//AC và \(QP=\dfrac{AC}{2}\)(2)
Từ (1) và (2) suy ra MN//QP và MN=QP
Xét tứ giác MNPQ có
MN//QP(cmt)
MN=QP(cmt)
Do đó: MNPQ là hình bình hành
Xét ΔABD có
Q là trung điểm của AD
M là trung điểm của AB
Do đó: QM là đường trung bình của ΔABD
Suy ra: QM//DB và \(QM=\dfrac{DB}{2}\)
hay \(QM=\dfrac{AC}{2}\)(3)
Từ (2) và (3) suy ra QM=QP
Hình bình hành MNPQ có QM=QP(cmt)
nên MNPQ là hình thoi
Xét tam giác ABC có:
+ M là trung điểm của AB (gt).
+ N là trung điểm của BC (gt).
\(\Rightarrow\) MN là đường trung bình.
\(\Rightarrow\) MN // AC và MN = \(\dfrac{1}{2}\) AC (Tính chất đường trung bình trong tam giác). (1)
Xét tam giác ADC có:
+ Q là trung điểm của DA (gt).
+ P là trung điểm của CD (gt).
\(\Rightarrow\) QP là đường trung bình.
\(\Rightarrow\) QP // AC và QP = \(\dfrac{1}{2}\) AC (Tính chất đường trung bình trong tam giác). (2)
Từ (1); (2) \(\Rightarrow\) MN // QP và MN = QP.
Xét tứ giác MNPQ:
+ MN // QP (cmt).
+ MN = QP (cmt).
\(\Rightarrow\) Tứ giác MNPQ là hình bình hành (dhnb).
Xét ΔBAD có
M,Q lần lượt là tđiểm của AB và AD
nên MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N,P lần lượt là trung điểm của CB và CD
nên NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MNPQ là hình bình hành(5)
Xét ΔABC có
M,N lần lượt là trung điểm của BA và BC
nên MN là đường trung bình
=>MN=AC/2=BD/2=MQ(3) và MN//AC
=>MN vuông góc với MQ(4)
Từ (3), (4)và (5) suy ra MNPQ là hình vuông
a: Xét ΔBAD có
M,Q lần lượt là tđiểm của AB và AD
nên MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N,P lần lượt là trung điểm của CB và CD
nên NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MNPQ là hình bình hành(5)
Xét ΔABC có
M,N lần lượt là trung điểm của BA và BC
nên MN là đường trung bình
=>MN=AC/2=BD/2=MQ(3) và MN//AC
=>MN vuông góc với MQ(4)
Từ (3), (4)và (5) suy ra MNPQ là hình vuông
Xét t/g ABD có: AM=BM (gt), AQ=DQ (gt)
=>MQ là đường trung bình của tam giác ABD
=>MQ // BD và MQ = 1/2BD (1)
CM tương tự với t/g CBD ta có: NP // BD và NP = 1/2BD (2)
Từ (1) và (2) => MQ // NP và MQ = NP
=> MNPQ là hình bình hành (3)
Xét t/g ABC ta có: AM=BM (gt), BN = CN (gt)
=> MN là đg trung bình của t/g ABC
=> MN // AC
Mà AC _|_ BD (gt)
=> MN _|_ BD
Mà NP // BD (cmt)
=> MN _|_ NP (4)
Từ (3) và (4) => MNPQ là hình chữ nhật
Ta có MNPQ là hình chữ nhật tâm O => M,N,P,Q cùng thuộc (O;OM)
Chứng minh tương tự, ta có tam giác AKD là tam giác cân tại K có KI là đường trung tuyến nên đồng thời là đường cao.
⇒ IK ⊥ AD (2)
Từ (1) và (2) suy ra; IK là đường vuông góc chung của hai đường thẳng AD và BC.
a: Gọi E là trung điểm của AB
ΔABC đều nên CE vuông góc AB
ΔABD đều nên DE vuông góc AB
=>AB vuông góc (CDE)
=>AB vuông góc CD
b: Xét ΔCAB có CN/CB=CM/CA
nên MN//AB và MN=1/2AB
Xét ΔDAB có DQ/DA=DP/DB
nên PQ//AB và PQ/AB=DQ/DA=1/2
=>MN//PQ và MN=PQ
=>MNPQ là hình bình hành
Xét ΔADC có AQ/AD=AM/AC
nên QM//DC
=>QM vuông góc AB
=>QM vuông góc QP
=>MNPQ là hình chữ nhật