K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

Ta phân tích :13=2+3+4

=> 1/2+1/3+1/4=13/12.

=> Ta có : 1/2016-x=1/2

=> Ta có 2016-x=2     =>x=2014

7 tháng 8 2018

Hãy tích cho tui đi

vì câu này dễ mặc dù tui ko biết làm 

Yên tâm khi bạn tích cho tui

Tui sẽ ko tích lại bạn đâu

THANKS

18 tháng 10 2020

Áp dụng BĐT Bunyakovsky ta được:

\(\left(x+y\right)\left(\frac{2020}{x}+\frac{1}{2020y}\right)\ge\left(\sqrt{x}\cdot\sqrt{\frac{2020}{x}}+\sqrt{y}\cdot\sqrt{\frac{1}{2020y}}\right)\)

\(=\left(\sqrt{2020}+\sqrt{\frac{1}{2020}}\right)^2=2020+\frac{1}{2020}+2=2022\frac{1}{2020}\)

\(\Leftrightarrow\frac{2021}{2020}\cdot S\ge2022\frac{1}{2020}\)

\(\Rightarrow S\ge2022\frac{1}{2020}\div\frac{2021}{2020}=2021\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\frac{\sqrt{x}}{\sqrt{\frac{2020}{x}}}=\frac{\sqrt{y}}{\sqrt{\frac{1}{2020y}}}\\x+y=\frac{2021}{2020}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2020y\\x+y=\frac{2021}{2020}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2020}\end{cases}}\)

Vậy Min(S) = 2021 khi \(\hept{\begin{cases}x=1\\y=\frac{1}{2020}\end{cases}}\)

10 tháng 1 2016

bài 1

[(x+2)/1010]+ [(x+2)/1111]= [(x+2)/1212]+[(x+2)/1313]

=>[(x+2)/1010]+[(x+2)/1111] - [(x+2)/1212]-[(x+2)/1313] = 0

=>(x+2).[(1/1010)+(1/1111)-(1/1212)-(1/1313)=0

Vì [(1/1010)+(1/1111)-(1/1212)-(1/1313)] khác 0

=>x+2=0

=>x=-2

 

10 tháng 1 2016

Bài 1: x=-2

Bài 2:x=17

Bài 3:x=2014

y=2010

 

25 tháng 8 2019

ko ghi lại đề 

ta thấy : 2019 - 1 = 2018 

2020 - 2 = 2018 

2021 - 3 = 2018 

2022 - 4 = 2018 

=> x = 2018

thử lại :

2018+1/2019 + 2018+2/2020 = 2018+3/2021 + 2018+4/2022

= 1 + 1 = 1 + 1

2 = 2

22 tháng 2 2020

2020 - 2 = 2018 
2021 - 3 = 2018 
2022 - 4 = 2018 
=> x = 2018

thây zô mà thử lại

16 tháng 7 2019

\(\frac{x+4}{2019}+\frac{x+3}{2020}=\frac{x+2}{2021}+\frac{x+1}{2020}\)

\(\Leftrightarrow(\frac{x+4}{2019}+1)+(\frac{x+3}{2020}+1)=(\frac{x+2}{2021}+1)+(\frac{x+1}{2022}+1)\)

\(\Leftrightarrow\frac{x+2023}{2019}+\frac{x+2023}{2020}=\frac{x+2023}{2021}+\frac{x+2023}{2022}\)

\(\Leftrightarrow\frac{x+2023}{2019}+\frac{x+2023}{2020}-\frac{x+2023}{2021}-\frac{x+2023}{2022}=0\)

\(\Leftrightarrow\left(x+2023\right)\left(\frac{1}{2019}+\frac{1}{2020}-\frac{1}{2021}-\frac{1}{2020}\right)=0\)

\(\Leftrightarrow x+2023=0\)

\(\Leftrightarrow x=-2023\)

16 tháng 7 2019

Nhầm đề :( Với bước thứ 4 sửa thành ( 1/2019 + 1/2020 - 1/2021 - 1/2022 ) 

9 tháng 4 2020

\(\frac{x+1}{2018}+\frac{x+1}{2019}=\frac{x+1}{2020}+\frac{x+1}{2021}\Leftrightarrow\frac{x+1}{2018}+\frac{x+1}{2019}-\frac{x+1}{2020}-\frac{x+1}{2021}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\right)=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

KL: ................

8 tháng 8 2016

\(\left(1\frac{1}{4}-\frac{3}{5}\right):\frac{17}{20}< \frac{x}{17}< \left(5\frac{1}{3}-3\frac{1}{2}\right).\frac{12}{17}\)

\(\left(\frac{5-3}{4}\right):\frac{17}{20}< \frac{x}{17}< \left(\frac{16}{3}-\frac{7}{2}\right).\frac{12}{17}\)

\(\frac{1}{2}:\frac{17}{20}< \frac{x}{17}< \left(\frac{32-21}{6}\right).\frac{12}{17}\)

\(\frac{10}{17}< \frac{x}{17}< \frac{3}{2}.\frac{12}{17}\)

\(\frac{10}{17}< \frac{x}{17}< \frac{18}{17}\)

( Mik thấy mẫu giống nhau mik sẽ bỏ mẫu đi mik sẽ tìm tử )

=> 10 < 11 ; 12 ; 13 ; 14 ; 15 ; 16 ; 17 < 18

=> x = { 11 ; 12 ; 13 ; 14 ; 15 ; 16 ; 17 }

k mik nha làm ơn đó