119 + 8819 = ?
22 + 583 = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
$A=1+2^2+2^4+2^6+...+2^{20}+2^{22}$
$=(1+2^2+2^4)+(2^6+2^8+2^{10})+(2^{12}+2^{14}+2^{16})+(2^{18}+2^{20}+2^{22})$
$=21+2^6\cdot(1+2^2+2^4)+2^{12}\cdot(1+2^2+2^4)+2^{18}\cdot(1+2^2+2^4)$
$=21+2^6\cdot21+2^{12}\cdot21+2^{18}\cdot21$
$=21\cdot(1+2^6+2^{12}+2^{18})$
Vì $21\vdots7$
nên $21\cdot(1+2^6+2^{12}+2^{18})\vdots7$
hay $A\vdots7$ (1)
Lại có:
$A=1+2^2+2^4+2^6+...+2^{20}+2^{22}$
$=(1+2^2+2^4+2^6)+(2^8+2^{10}+2^{12}+2^{14})+(2^{16}+2^{18}+2^{20}+2^{22})$
$=85+2^8\cdot(1+2^2+2^4+2^6)+2^{16}\cdot(1+2^2+2^4+2^6)$
$=85+2^8\cdot85+2^{16}\cdot85$
$=85\cdot(1+2^8+2^{16})$
Vì $85\vdots17$
nên $85\cdot(1+2^8+2^{16})\vdots17$
hay $A\vdots17$ (2)
Mặt khác: $(7,17)=1$ (3)
Từ (1); (2) và (3) $\Rightarrow A\vdots 7\cdot17=119$
$\text{#}Toru$
119+8819= 8938
22+583=605
119+8819=8938
22+583=605