K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2016

số đó là

6

nhé

đi nhé

AH
Akai Haruma
Giáo viên
30 tháng 5 2023

Bạn cần ghi đầy đủ đề thì mọi người mới giúp được chứ.

25 tháng 4 2022

x12 +x22= (x12 + 2x1x2 + x22) - 2x1x2 (*vì cộng 2x1x2 rồi nên -2x1x2 để cân bằng tỉ số)
Ở đây ta thấy biểu thức trong ngoặc là hẳng đẳng thức => (x1 +x2)2 - 2x1x2 - x1x2 = (x1 +x2)2 - 3x1x2

2 tháng 4 2023

\(x\left(3x-4\right)=2x^2+1\)

\(\Leftrightarrow3x^2-4x-2x^2-1=0\)

\(\Leftrightarrow x^2-4x-1=0\)

Theo Vi - ét, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=4\\x_1x_2=\dfrac{c}{a}=-1\end{matrix}\right.\)

Ta có :

\(A=x_1^2+x_2^2+3x_1x_2\)

\(=\left(x_1+x_2\right)^2-2x_1x_2+3x_1x_2\)

\(=\left(x_1+x_2\right)^2+x_1x_2\)

\(=4^2-1\)

\(=16-1\)

\(=15\)

\(\text{Δ}=\left(2m\right)^2-4\cdot2\cdot\left(m^2-2\right)\)

\(=4m^2-8m^2+16=-4m^2+16\)

Để phương trình có hai nghiệm thì (m-2)(m+2)<0

=>-2<m<2

Theo đề, ta có:

\(\Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2-1< 0\)

\(\Leftrightarrow\left(-m\right)^2-\dfrac{5}{2}\left(m^2-2\right)-1< 0\)

\(\Leftrightarrow m^2-\dfrac{5}{2}m^2+5-1< 0\)

\(\Leftrightarrow m^2\cdot\dfrac{-3}{2}< -4\)

\(\Leftrightarrow m^2>6\)

\(\Leftrightarrow\left[{}\begin{matrix}m>\sqrt{6}\\m< -\sqrt{6}\end{matrix}\right.\)

25 tháng 3 2023

\(2x^2-6x-3=0\)

\(\Delta'=\left(-3\right)^2+3.2=15>0\)

⇒ Phương trình có hai nghiệm phân biệt với mọi m.

Theo hệ thức viét ta có : \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1.x_2=-\dfrac{3}{2}\end{matrix}\right.\)

Ta có : \(B=3x_1x_2-x_1^2-x_2^2=-\left(x_1+x_2\right)^2+5x_1x_2=-9+5.\left(-\dfrac{3}{2}\right)=\dfrac{135}{2}\)

Vậy \(B=-\dfrac{135}{2}\) với hai nghiệm phân biệt thỏa mãn.

 

25 tháng 3 2023

ơ giỏi vậy

1 tháng 3 2016

=(X12+X22+2X1X2)+X1X2=(X1+X2)2+X1X2

Như Nguyen Van Thanh ai gọi là phân tích thành nhân tử

4 tháng 6 2021

PT có 2 nghiệm phân biệt `<=> \Delta'>0`

`<=>m^2-(m^2+m-5)>0`

`<=>-m+5>0`

`<=> m < 5`

Viet: `x_1+x_2=2m`

`x_1x_2=m^2+m-5`

Theo đề bài: `2(x_1^2+x_2^2)-3x_1x_2=29`

`<=>2[(x_1+x_2)^2-2x_1x_2]-3x_1x_2=29`

`<=>2(x_1+x_2)^2-7x_1x_2=29`

`<=>2.4m^2 - 7(m^2+m-5)=29`

`<=>` \(\left[{}\begin{matrix}m=6\left(L\right)\\m=1\left(TM\right)\end{matrix}\right.\)

Vậy `m=1`.

28 tháng 4 2018

Để PT có hai nghiệm  x 1 ; x 2  thì:  Δ = 25 − 12 m + 4 ≥ 0 ⇔ 29 − 12 m ≥ 0 ⇔ m ≤ 29 12

Ta có:  x 1 3 − x 2 3 + 3 x 1 x 2 = 75 ⇔ ( x 1 − x 2 ) [ ( x 1 + x 2 ) 2 − x 1 x 2 ] + 3 x 1 x 2 − 75 = 0     (*)

Theo định lý Vi-et ta có:  x 1 + x 2 = − 5 x 1 x 2 = 3 m − 1  thay vào (*) ta được

( x 1 − x 2 ) ( 26 − 3 m ) + 3 ( 3 m − 26 ) = 0 ⇔ ( x 1 − x 2 − 3 ) ( 26 − 3 m ) = 0 ⇔ m = 26 3                   x 1 − x 2 − 3 = 0

Kết hợp với điều kiện thì m = 26/3 không thỏa mãn.

Kết hợp  x 1 − x 2 − 3 = 0  với hệ thức Vi - et ta có hệ:  x 1 − x 2 − 3 = 0 x 1 + x 2 = − 5 x 1 x 2 = 3 m − 1 ⇔ x 1 = − 1 x 2 = − 4 m = 5 3        ( t / m ) .

Vậy m = 5/3  là giá trị cần tìm.