Cho tam giác ABC vuông tại A phân giác CE kẻ ED vuông góc BC tại D
a) Chứng minh tam giác ACE = tam giác DCE
b) Hai đường thẳng DE và AC cắt nhau tại K tam giác CBK là tam giác gì? Hãy chứng minh
c) Chứng minh AE < EB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔABD=ΔACE
b: ΔABD=ΔACE
=>góc ABD=góc ACE
=>góc HBC=góc HCB
=>ΔHBC cân tại H
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: Xét ΔADH vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADH}=\widehat{EDC}\)
Do đó: ΔADH=ΔEDC
c: Xét ΔAHC vuông tại A và ΔECH vuông tại E có
CH chung
AH=EC
Do đó: ΔAHC=ΔECH
a/
Xét 2 tg vuông ACE và tg vuông DCE có
CE chung
\(\widehat{ACE}=\widehat{DCE}\) (gt)
=> tg ACE = tg DCE (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)
\(\Rightarrow\widehat{AEC}=\widehat{DEC}\) => CE là phân giác \(\widehat{AED}\)
b/
Gọi M là giao của CE và AD
Ta có tg ACE = tg DCE (cmt) => AC=DC
Xét tg ACM và tg DCM có
AC=DC; CM chung
\(\widehat{ACM}=\widehat{DCM}\)
=> tg ACM = tg DCM (c.g.c) => MA=MD (1)
\(\Rightarrow\widehat{AMC}=\widehat{DMC}=\dfrac{\widehat{AMD}}{2}=\dfrac{180^o}{2}=90^o\)
\(\Rightarrow CE\perp AD\) (2)
Từ (1) và (2) => CE là đường trung trực của AD
a)
Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
Xét ΔABH vuông tại H và ΔDCH vuông tại D có
AH=DH(gt)
BH=CH(cmt)
Do đó: ΔABH=ΔDCH(hai cạnh góc vuông)
Suy ra: AB=DC(Hai cạnh tương ứng)
mà AB=AC(ΔABC cân tại A)
nên AC=DC(đpcm)
b) Xét ΔAHE vuông tại H và ΔDHE vuông tại H có
EH chung
AH=DH(gt)
Do đó: ΔAHE=ΔDHE(hai cạnh góc vuông)
Suy ra: AE=DE(Hai cạnh tương ứng)
Xét ΔACE và ΔDCE có
CA=CD(cmt)
CE chung
AE=DE(cmt)
Do đó: ΔACE=ΔDCE(c-c-c)