Tính hiệu a-b:
a=1.2+2.3+3.4+.....+98.99
b=12+22+32+....+982
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=1\cdot2+2\cdot3+...+98\cdot99\\ 3A=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot4\cdot3+...+98\cdot99\cdot3\\ 3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\left(5-2\right)+...+98\cdot99\left(100-97\right)\\ 3A=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-2\cdot3\cdot4+3\cdot4\cdot5-...-97\cdot98\cdot99+98\cdot99\cdot100\\ 3A=98\cdot99\cdot100=970200\\ A=323400\)
\(b,B=1^2+2^2+3^3+...+98^2\\ B=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+98\left(99-1\right)\\ B=\left(1\cdot2+2\cdot3+3\cdot4+...+98\cdot99\right)-\left(1+2+...+98\right)\\ B=323400-\left[\left(98+1\right)\left(98-1+1\right):2\right]\\ B=323400-4851=318549\\ c,C=1\cdot99+2\left(99-1\right)+3\left(99-2\right)+...+98\left(99-97\right)+99\left(99-98\right)\\ C=1\cdot99+2\cdot99-1\cdot2+3\cdot99-2\cdot3+...+98\cdot99-97\cdot98+99\cdot99-98\cdot99\\ C=99\left(1+2+...+99\right)-\left(1\cdot2+2\cdot3+...+98\cdot99\right)\\ C=99\left[\left(99+1\right)\left(99-1+1\right):2\right]-323400\\ C=490050-323400=166650\)
https://hoc24.vn/cau-hoi/a-tinh-tong-a1223349899b-su-dung-ket-qua-cau-a-tinh-b122232972982c-su-dung-ket-qua-cau-a-tinh-c1992983979829.2030286199021
:vv hỏi hoài z?
\(A=1\cdot2+2\cdot3+...+151\cdot152\)
\(=1\left(1+1\right)+2\left(1+2\right)+...+151\left(1+151\right)\)
\(=\left(1+2+3+...+151\right)+\left(1^2+2^2+...+151^2\right)\)
\(=\dfrac{151\left(151+1\right)}{2}+\dfrac{151\left(151+1\right)\left(2\cdot151+1\right)}{6}\)
\(=151\cdot76+\dfrac{151\cdot152\cdot303}{6}\)
\(=151\cdot76+151\cdot7676=1170552\)
\(C=2\cdot4+4\cdot6+...+2024\cdot2026\)
\(=2\cdot2\left(1\cdot2+2\cdot3+...+1012\cdot1013\right)\)
\(=4\left[1\left(1+1\right)+2\left(1+2\right)+...+1012\left(1+1012\right)\right]\)
\(=4\left[\left(1+2+...+1012\right)+\left(1^2+2^2+...+1012^2\right)\right]\)
\(=4\left[1012\cdot\dfrac{1013}{2}+\dfrac{1012\left(1012+1\right)\left(2\cdot1012+1\right)}{6}\right]\)
\(=4\left[506\cdot1013+345990150\right]\)
\(=1386010912\)
\(M=1^2+2^2+...+2024^2\)
\(=\dfrac{2024\left(2024+1\right)\cdot\left(2\cdot2024+1\right)}{6}\)
\(=2024\cdot2025\cdot\dfrac{4049}{6}\)
=2765871900
\(N=1^3+2^3+...+100^3\)
\(=\left(1+2+3+...+100\right)^2\)
\(=\left[\dfrac{100\left(100+1\right)}{2}\right]^2\)
\(=\left[50\cdot101\right]^2=5050^2\)
\(Q=1^3+2^3+...+2024^3\)
\(=\left(1+2+3+...+2024\right)^2\)
\(=\left[\dfrac{2024\left(2024+1\right)}{2}\right]^2\)
\(=\left[1012\left(2024+1\right)\right]^2\)
\(=2049300^2\)
BÀI 1:
\(S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(S=1+\frac{1}{1.2}+\frac{1}{2.2}+\frac{1}{2.4}+\frac{1}{4.4}+\frac{1}{4.8}\)
\(S=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}\)
\(S=1+1-\frac{1}{8}\)
\(S=\frac{15}{8}\)
BÀI 2:
\(A=1.2+2.3+3.4+...+98.99\)
\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+...+98.99.3\)
\(3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+98.99.\left(100-97\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+98.99.100-97.98.99\)
\(3A=\left(1.2.3+2.3.4+3.4.5+98.99.100\right)-\left(1.2.3+2.3.4+...+97.98.99\right)\)
\(3A=98.99.100\)
\(3A=970200\)
\(\Rightarrow A=970200:3\)
\(A=323400\)
CHÚC BN HỌC TỐT!!!
A = 1.2 + 2.3 + 3.4 + ...+ 59.60
3A = 1.2.3 + 2.3.3 + 3.4.3 + ...+ 59.60.3
3A = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) +...+ 59.60.(61-58)
3A = 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +...+ 59.60.61 - 58.59.60
3A = 58.59.60 => A = 58.59.60 : 3 = 68 440
B = 12 + 22 + 32 + 592
B = 1.2 + 2.2 + 3.3 + 59.59
B = 2 + 4 + 9 + 3481
B = 3496
vậy A - B = 68 440 - 3 496 = 64 944
( bấm nhé )
Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 32.33
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + 32.33.34
=> 3S = 32.33.34
=> S = \(\frac{32.33.34}{3}=11968\)
a) \(=\left(127+73\right)^2=200^2=40000\)
b) \(=18^8-\left(18^8-1\right)=1\)
c) \(=\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\)
\(=100+99+98+97+...+2+1=5050\)
d) biến đổi thành \(20^2-19^2+18^2-17^2+..+2^2-1^2\)
rồi giải ra như trên
a) Đặt A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32
A = 1/2 + 1/22 + 1/23 + 1/24 + 1/25
2A = 2(1/2 + 22 + 1/23 + 1/24 + 1/25)
2A = 1 + 1/2 + 1/22 + 1/23 + 1/24
2A - A = (1 + 1/2 + 1/22 + 1/23 + 1/24) - (1/2 + 1/22 + 1/23 + 1/24 + 1/25)
A = 1 - 1/25
A = 31/32
b) 2/1.2 + 2/2.3 + 2/3.4 + ... + 2/18 . 19 + 2/19.20
= 2(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/18.19 + 1/19.20)
= 2.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/18 - 1/19 + 1/19 - 1/20)
= 2. (1 - 1/20)
= 2.19/20
= 19/10