K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a: ĐKXĐ: \(x+4\ne0\)

=>\(x\ne-4\)

b: ĐKXĐ: \(2x-1\ne0\)

=>\(2x\ne1\)

=>\(x\ne\dfrac{1}{2}\)

c: ĐKXĐ: \(x\left(y-3\right)\ne0\)

=>\(\left\{{}\begin{matrix}x\ne0\\y-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\)

d: ĐKXĐ: \(x^2-4y^2\ne0\)

=>\(\left(x-2y\right)\left(x+2y\right)\ne0\)

=>\(x\ne\pm2y\)

e: ĐKXĐ: \(\left(5-x\right)\left(y+2\right)\ne0\)

=>\(\left\{{}\begin{matrix}x\ne5\\y\ne-2\end{matrix}\right.\)

 Bài 2:

a: \(\dfrac{-12x^3y^2}{-20x^2y^2}=\dfrac{12x^3y^2}{20x^2y^2}=\dfrac{12x^3y^2:4x^2y^2}{20x^2y^2:4x^2y^2}=\dfrac{3x}{5}\)

b: \(\dfrac{x^2+xy-x-y}{x^2-xy-x+y}\)

\(=\dfrac{\left(x^2+xy\right)-\left(x+y\right)}{\left(x^2-xy\right)-\left(x-y\right)}\)

\(=\dfrac{x\left(x+y\right)-\left(x+y\right)}{x\left(x-y\right)-\left(x-y\right)}=\dfrac{\left(x+y\right)\left(x-1\right)}{\left(x-y\right)\left(x-1\right)}\)

\(=\dfrac{x+y}{x-y}\)

c: \(\dfrac{7x^2-7xy}{y^2-x^2}\)

\(=\dfrac{7x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)

\(=\dfrac{-7x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{-7x}{x+y}\)
d: \(\dfrac{7x^2+14x+7}{3x^2+3x}\)

\(=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)

\(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)

e: \(\dfrac{3y-2-3xy+2x}{1-3x-x^3+3x^2}\)

\(=\dfrac{3y-2-x\left(3y-2\right)}{1-3x+3x^2-x^3}\)

\(=\dfrac{\left(3y-2\right)\left(1-x\right)}{\left(1-x\right)^3}=\dfrac{3y-2}{\left(1-x\right)^2}\)

g: \(\dfrac{x^2+7x+12}{x^2+5x+6}\)

\(=\dfrac{\left(x+3\right)\left(x+4\right)}{\left(x+3\right)\left(x+2\right)}\)

\(=\dfrac{x+4}{x+2}\)

 

16 tháng 11 2015

a)x=+-4,+-7;+-2,+-14
b)(2x)^2-1=-21=>(2x)^2=-20=>2x=\(\sqrt{-20}\)=>x sẽ ko có giá trị vì ko có căn âm
c)2xy+x-6y-3-7=0
=2xy+x-6y-10=x+2(xy-3y-5)=0=>xy-3y-5=0

12 tháng 2 2016

Câu e: x+xy +y =9;x[y+1]+y=9      ;x[y+1]+[y+1]=10     

[x+1]+[y+1]=10 nên [x+1] và [y+1] thuộc ƯC của 10 sau đó kẻ bảng ra 

DD
24 tháng 1 2021

a) \(\left(x-30\right)\left(2y+1\right)=7=1.7=\left(-1.\right)\left(-7\right)\)

Ta xét bảng: 

x-3017-1-7
2y+171-7-1
x31372923
y30-4-1

c) \(xy+3x-7y=21\Leftrightarrow x\left(y+3\right)-7\left(y+3\right)=0\Leftrightarrow\left(x-7\right)\left(y+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=7\\y=3\end{cases}}\).

b), d) bạn làm tương tự. 

12 tháng 10 2015

khó + lười + nhiều = không làm

16 tháng 5 2019

Hello

15 tháng 4 2020

1) x,y nguyên => x-3; 2y+1 nguyên

=> x-3; 2y+1 \(\inƯ\left(13\right)=\left\{-13;-1;1;13\right\}\)

ta có bảng

x-3-13-1113
x-102416
2y+1-1-13131
y-1-760

2) làm tương tự

3) xy-x-y=0

<=> x(y-1)-(y-1)=0+1

<=> (y-1)(x-1)=1

x,y nguyên => y-1; x-1 nguyên

=> y-1; x-1 \(\inƯ\left(1\right)=\left\{-1;1\right\}\)

TH1: \(\hept{\begin{cases}y-1=-1\\x-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}y=0\\x=0\end{cases}}}\)

TH2: \(\hept{\begin{cases}x-1=1\\y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=2\end{cases}}}\)

4) xy+3x-7y=21

<=> x(y+3)-7(y+3)=0

<=> (y+3)(x-7)=0

\(\Leftrightarrow\orbr{\begin{cases}y+3=0\\x-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=-3\\x=7\end{cases}}}\)

15 tháng 4 2020

1) Do: (x-3)(2y+1)=13 nên 13 chia hết cho (x-3)

=> (x-3);(2y+1) thuộc ước của 13

Ta có bảng gt sau:

x-3                1                    -1                        13                       -13

2y+1             13                  -13                       1                         -1

x                    4                    2                         16                       -10

y                    6                    -7                         0                        -1

NX              chọn             chọn                     chọn                    chọn

Vậy...

Câu 2) tương tự, bn tự làm nha.

3) xy-x-y=0

=>(xy-x)-(y-1)=1

=>x(y-1)-1(y-1)=1

=>(x-1)(y-1)=1

4)xy+3x-7y=21

=>x(y+3)-7(y+3)=0

=>(x-7)(y+3)=0

3,4 bạn làm tiếp nha mình lười gõ 

24 tháng 6 2021

Trả lời:

1, \(P=9x^2-7x+2=9\left(x^2-\frac{7}{9}x+\frac{2}{9}\right)=9\left[\left(x^2-2x\frac{7}{18}+\frac{49}{324}\right)+\frac{23}{324}\right]\)

\(=9\left[\left(x-\frac{7}{18}\right)^2+\frac{23}{324}\right]=9\left(x-\frac{7}{18}\right)^2+\frac{23}{36}\)

Ta có: \(9\left(x-\frac{7}{18}\right)^2\ge0\forall x\)

\(\Leftrightarrow9\left(x-\frac{7}{18}\right)^2+\frac{23}{26}\ge\frac{23}{26}\forall x\)

Dấu "=" xảy ra khi \(x-\frac{7}{18}=0\Leftrightarrow x=\frac{7}{18}\)

Vậy GTNN của P = 23/36 khi x = 7/18