gieo đồng thời hai con xúc xắc ;có bao nhiêu kết quả có thể mà số chấm xuất hiện trên hai mặt là chẵn
nói chắc kết quả thôi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Việc xảy ra biến cố A không ảnh hưởng tới xác suất xảy ra của biến cố B, và ngược lại, việc xảy ra biến cố B cũng không ảnh hưởng tới xác suất xảy ra của biến cố A vì 2 bạn mỗi người 1 con xúc xắc và gieo đồng thời.
Việc xảy ra biến cố B không ảnh hưởng tới xác suất xảy ra biến cố A và xảy ra biến cố A cũng không ảnh hưởng tới xác suất xảy ra biến cố B là bởi vì hai người này là hai người chơi độc lập, họ gieo 2 con xúc sắc khác nhau
Số phần tử của không gian mẫu là \(n\left( \Omega \right) \ = {6^2}\; =36 \) .
a) Gọi A là biến cố: “Tổng số chấm trên hai con xúc xắc bằng 8”
Ta có \(A = \left\{ {\left( {2,6} \right);\left( {3,5} \right);\left( {4,4} \right);\left( {5,3} \right);\left( {6,2} \right)} \right\}\) suy ra \(n\left( A \right) = 5\)
Vậy xác suất của biến cố A là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{5}{{36}}\)
b) Gọi B là biến cố: “Tổng số chấm trên hai con xúc xắc nhỏ hơn 8”
Gọi C là biến cố: “Tổng số chấm trên hai con xúc xắc lớn hơn 8”
\(C = \left\{ {\left( {3;6} \right),\left( {4;5} \right),\left( {4;6} \right),\left( {5;4} \right),\left( {5;5} \right),\left( {5;6} \right),\left( {6;3} \right),\left( {6;4} \right),\left( {6;5} \right),\left( {6;6} \right)} \right\}\) suy ra \(n\left( C \right) = 10\)
Ta có: \(n\left( B \right) = n\left( \Omega \right) - n\left( A \right) - n\left( C \right) = 21\)
Vậy xác suất của biến cố B là \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{21}}{{36}} = \frac{7}{{12}}\).
Số chấm trên 1 con xúc xắc chỉ có thể là 1;2;3;4;5 hoặc 6
- Biến cố: “Tổng số chấm xuất hiện trên hai con xúc xắc nhỏ hơn 13” là biến cố chắc chắn nên biến cố có xác suất là 1.
- Biến cố: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 1” là biến cố không thể nên biến cố có xác suất là 0.
Số phần tử của không gian mẫu là \(n\left( \Omega \right) = 36\).
Gọi E là biến cố tổng số chấm xuất hiện trên hai con xúc xắc bằng 4 hoặc bằng 6. Khi đó ta có \(E = \left\{ {\left( {1,3} \right);\left( {2,2} \right);\left( {3,1} \right);\left( {1,5} \right);\left( {2,4} \right);\left( {3,3} \right);\left( {4,2} \right);\left( {5,1} \right)} \right\} \Rightarrow n\left( E \right) = 8\).
Vậy xác suất của biến cố E là \(P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega \right)}} = \frac{8}{{36}} = \frac{2}{9}\).
A={3;6}
B={4}
Hai biến cố này không thể đồng thời xảy ra được vì \(A\cap B=\varnothing\)
a) Ví dụ 1: sau khi em gieo con xúc xắc được 3 chấm và 5 chấm. Tổng số chấm là 3+5=8 chia hết cho 2 nên sự kiện “Tổng số chấm xuất hiện trên hai con xúc xắc là số chẵn” xảy ra.
Ví dụ 2: sau khi em gieo 2 con xúc xắc được 1 chấm và 2 chấm. Tổng số chấm là 1+2=3 không chia hết cho 2 nên sự kiện “Tổng số chấm xuất hiện trên hai con xúc xắc là số chẵn” không xảy ra.
b) Ta sử dụng luôn ví dụ 1 và ví dụ 2 bên trên:
Ở ví dụ 1: tổng số chấm bằng 8 (lớn hơn 7) nên sự kiện “Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn 7” xảy ra.
Ở ví dụ 2: tổng số chấm bằng 3 (không lớn hơn 7) nên sự kiện “Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn 7” không xảy ra.
Sự kiện a có thể xảy ra
Còn sự kiện b cũng có thể xảy ra
Không gian mẫu là tập hợp số chấm xuất hiện khi gieo con xúc xắc hai lần liên tiếp khi đó \(n\left( \Omega \right) = 6.6 = 36\)
A = {(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6)} \( \Rightarrow P\left( A \right) = \frac{6}{{36}} = \frac{1}{6}\)
B = {(1; 2); (2; 2); (3; 2); (4; 2); (5; 2); (6; 2)} \( \Rightarrow P\left( B \right) = \frac{6}{{36}} = \frac{1}{6}\)
C = {(2; 6); (3; 5); (4; 4); (5; 3); (6; 2)} \( \Rightarrow P\left( C \right) = \frac{5}{{36}}\)
D = {(1; 6); (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)} \( \Rightarrow P\left( D \right) = \frac{6}{{36}} = \frac{1}{6}\)
Do đó
\(P\left( A \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( B \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( C \right).P\left( D \right) = \frac{5}{{36}}.\frac{1}{6} = \frac{5}{{216}}\)
Mặt khác
AC = \(\emptyset \Rightarrow P\left( {AC} \right) = 0\)
BC = {(6; 2)} \( \Rightarrow P\left( {BC} \right) = \frac{1}{{36}}\)
CD = \(\emptyset \Rightarrow P\left( {CD} \right) = 0\)
Khi đó \(P\left( {AC} \right) \ne P\left( A \right).P\left( C \right);P\left( {BC} \right) \ne P\left( B \right).P\left( C \right);P\left( {CD} \right) \ne P\left( C \right).P\left( D \right)\)
Vậy các cặp biến cố A và C; B và C, C và D không độc lập.
Số chấm xuất hiện trên hai mặt là số chắn:
X = { 2,4,6 }