K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2016

Xét tổng:

(5a-4b)+4(2a+b)=5a-4b+8a+4b

<=>(5a-4b)+4(2a+b)=13a

Ta có : 13 chia hết cho 13 => 13a chia hết cho 13 với mọi a thuộc Z

=> [(5a-4b)+4(2a+b)] chia hết cho 13                 (1)

Ta có (5a-4b) chia hết cho 13 - Bài cho               (2)

Từ (1) ; (2) => 4(2a+b) chia hết cho 13

mà (4,13) =1

=> (2a+b) chia hết cho 14

Do đó nếu (5a-4b) chia hết cho 13 thì (2a+b) chia hết cho 13

23 tháng 6 2019

Ta co:\(\hept{\begin{cases}2a+b⋮13\\5a-4b⋮13\end{cases}\Rightarrow\hept{\begin{cases}-2.\left(2a+b\right)⋮13\\5a-4b⋮13\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}-4a-2b⋮13\\5a-4b⋮13\end{cases}}\Rightarrow-4a-2b+5a-4b=a-6b\)

23 tháng 6 2019

DK: a,b thuoc N, a > 0

\(\overline{a0b}=100a+b⋮7\)

\(\Rightarrow4.\left(100a+b\right)⋮7\)

\(\Rightarrow400a+4b⋮7\)

\(\Rightarrow a+4b⋮7\text{ vi }399a⋮7\)

\(\)

16 tháng 9 2017

2a+b+5a-4b= 7a-3b

ta có 7a-3b chia hết cho 13=>2(7a-3b)chia hết cho 13

=> 14a-6b=13a+a-6b chia hết cho 13

mà 13a chia hết cho 13

=>a-6b chia hết cho 13(đpcm)

9 tháng 6 2018

Có 2a+b chia hết cho 13 nên 2(2a+b) chia hết cho 13 hay 4a+2b chia hết cho 13 (1)
Mà 5a-4b cũng chia hết cho 13 (2) nên hiệu của (2) trừ đi (1) cũng chia hết cho 13
tức là (5a-4b)-(4a+2b)=5a-4b-4a-2b=a-6b chia hết cho 13

20 tháng 8 2018

x,y thuộc Z 

A= (13+2)x -(26-3)y = 13x + 2x -26y + 3y =13(x-2y) + (2x+3y) = 13(x-2y) + B

A chia hết 13 => (2x+3y) chia hết 13 vì 13(x-2y) chắc chắn chia hết 13=> B chia hết 13

ngược lại cũng đúng.

15 tháng 5 2020

Bài làm: ( Toán lớp 6 ).

x , y đều thuộc Z.

A = ( 13 + 2 )x - ( 26 - 3)y.

   = 13x + 2x - 26y + 3y.

   = 13( x - 2y ) + ( 2x + 3y ) = 13 ( x - 2y ) + B.

Vì A chia hết cho 13.

Suy ra: ( 2x + 3y ) : 13.

Vì 13( x - 2y ) : 13.

Suy ra: B chia hết cho 13.

Học tốt #

7 tháng 9 2017

Giả sử \(\left(a-6b\right)⋮b\)

Ta có: \(\hept{\begin{cases}\left(2a+b\right)⋮13\left(1\right)\\\left(5a-4b\right)⋮13\Rightarrow\left(10a-8b\right)⋮13\left(2\right)\\\left(a-6b\right)⋮13\left(3\right)\end{cases}}\)

Cộng (1),(2),(3) vế với vế:

\(\left[\left(2a+b\right)+\left(10a-8b\right)+\left(a-6b\right)\right]⋮13\)

\(\Rightarrow\left(2a+b+10a-8b+a-6b\right)⋮13\)

\(\Rightarrow\left[\left(2a+10a+a\right)+\left(b-8b-6b\right)\right]⋮13\)

\(\Rightarrow\left(13a-13b\right)⋮13\)

\(\Rightarrow13\left(a-b\right)⋮13\)(đúng)

=> Giả sử đúng

Vậy...

A)Ta có: (3a + 4b) ⋮ 7 ⇒ 2 . (3a + 4b) ⋮ 7 ⇒ (6a + 8b) ⋮ 7 (1)

Ta lại có:

(6a + 8b) + (a + 6b)

=(6a + a) + (8b + 6b)

=7a + 14b

=7a + 7 . 2 . b

=7 . (a + 2b) ⋮ 7 (vì 7 ⋮ 7)

⇒(6a + 8b) + (a + 6b) ⋮ 7 mà (6a + 8b) ⋮ 7 (theo (1))

⇒(a + 6b) ⋮ 7 (ĐPCM)

Vậy...

Xin lỗi anh nhưng câu B) em không hiểu lắm ạ!

 

B) Làm tương tự câu a ta được:

(a+6b); (2a+5b); (3a+4b); (4a+3b); (5a+2b); (6a+b) đều chia hết cho 7 ⇒(a+6b).(2a+5b).(3a+4b).(4a+3b).(5a+2b).(6a+b) chia hết cho 7.7.7.7.7.7 ⇒(a+6b).(2a+5b).(3a+4b).(4a+3b).(5a+2b).(6a+b) chia hết cho 76 (ĐPCM)

Vậy...

A)Ta có: (3a + 4b) ⋮ 7 ⇒ 2 . (3a + 4b) ⋮ 7 ⇒ (6a + 8b) ⋮ 7 (1)

Ta lại có:

(6a + 8b) + (a + 6b)

=(6a + a) + (8b + 6b)

=7a + 14b

=7a + 7 . 2 . b

=7 . (a + 2b) ⋮ 7 (vì 7 ⋮ 7)

⇒(6a + 8b) + (a + 6b) ⋮ 7 mà (6a + 8b) ⋮ 7 (theo (1))

⇒(a + 6b) ⋮ 7 (ĐPCM)

Vậy...

Xin lỗi anh nhưng câu B) em không hiểu lắm ạ!

 

7 tháng 1

Viết lại câu b đi bạn.

A)Ta có: (3a + 4b) ⋮ 7 ⇒ 2 . (3a + 4b) ⋮ 7 ⇒ (6a + 8b) ⋮ 7 (1)

Ta lại có:

(6a + 8b) + (a + 6b)

=(6a + a) + (8b + 6b)

=7a + 14b

=7a + 7 . 2 . b

=7 . (a + 2b) ⋮ 7 (vì 7 ⋮ 7)

⇒(6a + 8b) + (a + 6b) ⋮ 7 mà (6a + 8b) ⋮ 7 (theo (1))

⇒(a + 6b) ⋮ 7 (ĐPCM)

Vậy...

Xin lỗi anh nhưng câu B) em không hiểu lắm ạ!

 

A)Ta có: (3a + 4b) ⋮ 7 ⇒ 2 . (3a + 4b) ⋮ 7 ⇒ (6a + 8b) ⋮ 7 (1)

Ta lại có:

(6a + 8b) + (a + 6b)

=(6a + a) + (8b + 6b)

=7a + 14b

=7a + 7 . 2 . b

=7 . (a + 2b) ⋮ 7 (vì 7 ⋮ 7)

⇒(6a + 8b) + (a + 6b) ⋮ 7 mà (6a + 8b) ⋮ 7 (theo (1))

⇒(a + 6b) ⋮ 7 (ĐPCM)

Vậy...

Xin lỗi anh nhưng câu B) em không hiểu lắm ạ!