Tìm số nguyên dương n lớn nhất thỏa mãn n là ước của mọi số nguyên dương \(p^6-1\) với \(p\) là số nguyên tố lớn hơn 7.( Trích đề thi JBMO 2016)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán , gợi ý giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều lắm ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\left(n+3\right)\left(n^3+2n^2+1\right)\) cũng là SCP
\(\Rightarrow4\left(n^4+5n^3+6n^2+n+3\right)\) là SCP
\(\Rightarrow4n^4+20n^3+24n^2+4n+12=k^2\)
Ta có:
\(4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n-1\right)^2+3n^2+14n+11>\left(2n^2+5n-1\right)^2\)
\(4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n+1\right)^2-\left(n-1\right)\left(5n+11\right)\le\left(2n^2+5n+1\right)^2\)
\(\Rightarrow\left(2n^2+5n-1\right)^2< k^2\le\left(2n^2+5n+1\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n\right)^2\\4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n+1\right)^2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}n^2-4n-12=0\\\left(n-1\right)\left(5n+11\right)=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}n=1\\n=6\end{matrix}\right.\)
Thay lại kiểm tra thấy đều thỏa mãn
Với \(y=1\Rightarrow\dfrac{x^2+x+1}{x+1}\in Z\Rightarrow\dfrac{1}{x+1}\in Z\Rightarrow\) ko tồn tại x nguyên dương thỏa mãn (loại)
Với \(y>1\):
Đặt \(\dfrac{x^2+x+1}{xy+1}=k\Rightarrow x^2-\left(ky-1\right)x+1-k=0\)
\(\Delta=\left(ky-1\right)^2+4\left(k-1\right)\) là số chính phương
Ta có: \(k\ge1\Rightarrow\left(ky-1\right)^2+4\left(k-1\right)\le\left(ky-1\right)^2\)
Đồng thời \(y>1\Rightarrow y\ge2\Rightarrow2ky\ge4k>3\)
\(\Rightarrow\left(ky-1\right)^2+4\left(k-1\right)=\left(ky-2\right)^2+\left(2ky-3\right)+4\left(k-1\right)>\left(ky-2\right)^2\)
\(\Rightarrow\left(ky-2\right)^2< \left(ky-1\right)^2+4\left(k-1\right)\le\left(ky-1\right)^2\)
\(\Rightarrow\left(ky-1\right)^2+4\left(k-1\right)=\left(ky-1\right)^2\)
\(\Rightarrow k=1\Rightarrow\dfrac{x^2+x+1}{xy+1}=1\)
\(\Rightarrow x^2+x=xy\Rightarrow y=x+1\)
\(\Rightarrow y-x=1\)