nx(n+1)x(n+11) chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= -5n
= (-1).5n \(⋮5\)
(n - 1)(3 - 2n) - n (n + 5)
= 3n - 2n2 - 3 + 2n - n2 - 5n
= -3n2 - 3
= 3(- n2 - 1)\(⋮3\)
chứng minh rằng
a) nx(n+2)x(n+7) chia hết cho 3
b) 5^n-1 chia hết cho 4
c) n^2+n+2 khong chia het cho 5
a) =>n có dạng 3k,3k+1,3k+2 (k thuộc N)
-Nếu n có dạng 3k =>n chia hết cho 3 =>n(n+2)(n+7) chia hết cho 3
-Nếu n có dạng 3k+1=>n+2=3k+1+2=3k+3=3(k+1)
=>n+2 chia hết cho 3
=>n(n+2)(n+7) chia hết cho 3
-Nếu n có dạng 3k+2=>n+7=3k+2+7=3k+9=3(k+3)
=>n+7 chia hết cho 3
=>n(n+2)(n+7) chia hết cho 3
Vậy n(n+2)(n+7) chia hết cho 3
b)Vì 5 chia 4 dư 1 =>5n chia 4 dư 1
=>5n-1 chia hết cho 4
Vậy 5n-1 chia hết cho 4
c)Ta có:n2+n+2=n(n+1)+2
Vì n(n+1) là tích của 2 số liên tiếp => có tận cùng là 0,2 hoặc 6
=>n(n+1)+2 có tận cùng là 2,4 hoặc 8
Mà tận cùng là 2,4 hay 8 đều không chia hết cho 5
=>n(n+2)+2 không chia hết cho 5
=>n2+n+2 không chia hết cho 5
Vậy n2+n+2 không chia hết cho 5
-----------------The end------------------
+Nếu n chia hết cho 3 thì \(n\left(n+2\right)\left(n+7\right)\)chia hết cho 3.
+Nếu n chia 3 dư 1 thì n+2 chia hết cho 3 => \(n\left(n+2\right)\left(n+7\right)\) chia hết cho 3.
+Nếu n chia 3 dư 2 thì n+7 chia hết cho 3 => \(n\left(n+2\right)\left(n+7\right)\) chia hết cho 3.
Vậy n(n+2)(n+7) luôn chia hết cho 3
Tìm n ∈ Z biết ( 4n - 11) chia hết (2n + 3)
( 4n - 11)= 2(2n+3)-17 chia hết (2n + 3)
=> 17 chia hết cho 2n+3
2n+3 thuộc { 1,-1,17,-17}
n thuộc { -1,-2,7, -10}
Mk chỉ bt lm phần trên thôi nha :)
Xét thừa số (n+3) ta thấy: 3 là số tự nhiên lẻ (1)
Lại có trong thừa số (n+6): 6 là số tự nhiên chẵn(2)
Mà số tự nhiên chia hết cho 2 là số tự nhiên chẵn và trong 1 tích chỉ cần 1 thừa số là số chẵn => tích đó chẵn.(3)
Từ (1) (2) và (3): (n+3)x(n+6) luôn là số chẵn hay chia hết cho 2 với mọi n thuộc N