K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2022

a.Áp dụng đl pytago:

BC^2 = AB^2 + AC^2

--> BC = 10 ( cm).

b. Xét góc CD vuông góc BD

AB vuoong góc BD

-- > BD vuông góc AC

-- > góc CDM= góc BAD ( so le trong)

Xét tam giác BAM và tam giác DCM có:

góc BMA = góc CMD ( đối đỉnh).

BM = MC ( AM là trung tuyến tam giác ABC).

 góc CDM= góc BAD ( cmt)

do đó : tam giác BAM = tam giác DCM (g-c-g).

19 tháng 4 2022

cảm ơn bn nhiều

14 tháng 5 2022

A B C E F I M

a/ Xét tg vuông ABC có 

BM=CM (gt) => AM=BM=CM=BC/2 (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)

=> tg ABM cân tại M => \(\widehat{BAM}=\widehat{ABM}\) (góc ở đáy tg cân)

b/ Xét tg vuông AEF và tg vuông AFM có

\(\widehat{AEF}=\widehat{FAM}\) (cùng phụ với \(\widehat{AFE}\) ) (1)

Mà AM=CM (cmt) => tg MAC cân tại M => \(\widehat{FAM}=\widehat{ACB}\) (góc ở đáy th cân) (2)

Từ (1) và (2) \(\Rightarrow\widehat{ACB}=\widehat{AEF}\)

Xét tg MBE và tg MFC có

\(\widehat{AEF}=\widehat{ACB}\) (cmt)

\(\widehat{BME}=\widehat{CMF}\) (góc đối đỉnh)

=> tg MBE đồng dạng với tg MFC (g.g.g)

c/ Xét tg vuông ABC và tg vuông AFE có

\(\widehat{AEF}=\widehat{ACB}\) (cmt)

=> tg ABC đông dạng với tg AFE

\(\Rightarrow\dfrac{AB}{AF}=\dfrac{AC}{AE}\Rightarrow AB.AE=AC.AF\)

d/

 

11 tháng 4 2022

undefined

15 tháng 12 2023

Bài 2

loading...

Ta có:

∠N + ∠DMN + ∠MDN = 180⁰ (tổng các góc trong ∆MDN)

⇒ ∠NMD = 180⁰ - (∠N + ∠MDN) (1)

∠P + ∠MDP + ∠PMD = 180⁰ (tổng các góc trong ∆MDP)

⇒ ∠PMD = 180⁰ - (∠MDP + ∠P) (2)

Do MD là tia phân giác của ∠NMP (gt)

⇒ ∠NMD = ∠PMD (3)

Từ (1), (2) và (3) ⇒ ∠DMP + ∠P = ∠N + ∠DMN

⇒ ∠DMP - ∠DMN = ∠N - ∠P

15 tháng 12 2023

Bài 1

loading... a) Do M là trung điểm của BC (gt)

⇒ MB = MC

Xét ∆ABM và ∆ACM có:

AM là cạnh chung

AB = AC (gt)

MB = MC (cmt)

⇒ ∆ABM = ∆ACM (c-c-c)

b) Do ∆ABM = ∆ACM (cmt)

⇒ ∠AMB = ∠AMC (hai góc tương ứng)

Mà ∠AMB + ∠AMC = 180⁰ (kề bù)

⇒ ∠AMB = ∠AMC = 180⁰ : 2 = 90⁰

⇒ AM ⊥ BC

Mà BD ⊥ BC (gt)

⇒ BD // AM

c) Do ∆ABM = ∆ACM (cmt)

⇒ ∠BAM = ∠CAM (hai góc tương ứng)

Do BD // AM (cmt)

⇒ ∠ADB = ∠CAM (đồng vị)

∠ABD = ∠BAM (so le trong)

Mà ∠BAM = ∠CAM (cmt)

⇒ ∠ABD = ∠ADB