K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2023

a: từ 1 đến 100 sẽ có \(\dfrac{100-1}{1}+1=100-1+1=100\left(số\right)\)

=>Sẽ có \(\dfrac{100}{2}=50\) cặp số

1-2+3-4+...+99-100

=(1-2)+(3-4)+...+(99-100)

=(-1)+(-1)+...+(-1)

=-1*50=-50

b: Sửa đề: \(2-4+6-8+...+46-48+50\)

Từ 2 đến 48 sẽ có \(\dfrac{48-2}{2}+1=24-1+1=24\left(số\right)\)

=>Sẽ có \(\dfrac{24}{2}=12\left(cặp\right)\)

\(2-4+6-8+...+46-48+50\)

\(=\left(2-4\right)+\left(6-8\right)+...+\left(46-48\right)+50\)

\(=\left(-2\right)+\left(-2\right)+...+\left(-2\right)+50\)

\(=50-2\cdot24=50-48=2\)

c: Đặt A=\(1+2-3+4+...+97+98-99+100\)

\(=\left(1+2-3+4\right)+\left(5+6-7+8\right)+...+\left(97+98-99+100\right)\)

\(=4+12+...+196\)

Từ 4 đến 196 sẽ có \(\dfrac{196-4}{8}+1=\dfrac{192}{8}+1=25\left(số\right)\)

Tổng của dãy A là: \(\left(196+4\right)\cdot\dfrac{25}{2}=\dfrac{25}{2}\cdot200=100\cdot25=2500\)

17 tháng 9 2016

a)A=1+2+22+...+21000

2A=2(1+2+22+...+21000)

2A=2+22+...+21001

2A-A=(2+22+...+21001)-(1+2+22+...+21000)

A=21001-1

b)B=3+32+...+32015

3B=3(3+32+...+32015)

3B=32+33+...+32016

3B-B=(32+33+...+32016)-(3+32+...+32015)

2B=22016-3

\(B=\frac{2^{2016}-3}{2}\)

c)C=4+42+...+4n

4C=4(4+42+...+4n)

4C=42+43+...+4n+1

4C-C=(42+43+...+4n+1)-(4+42+...+4n)

3C=4n+1-4

\(C=\frac{4^{n+1}-4}{3}\)

17 tháng 9 2016

Ta có: A = 1 + 2 + 22 + ...... + 2100

=> 2A =  2 + 22  + 23 + ...... + 2101

=> 2A - A = 2101 - 1

=> A = 2101 - 1

B = 3 + 32 + 33 + ...... + 22015

=> 3B = 32 + 3+ 34 + ...... + 22016

=> 3B - B = 32016 - 3

=> 2B = 32016 - 3

=> B = 32016 - 3/2

 C = 4 + 42 + 43 + .... + 4n

=> 4C = 42 + 43 + 44 + ..... + 4n + 1

=> 4C - C = 4n + 1 - 4 

=> 3C = 4n + 1 - 4 

=> C = 4n + 1 - 4 / 3

15 tháng 8 2023

a) \(1+2+3+4+...+n\)

\(=\left(n+1\right)\left[\left(n-1\right):1+1\right]:2\)

\(=\left(n+1\right)\left(n-1+1\right):2\)

\(=n\left(n+1\right):2\)

\(=\dfrac{n\left(n+1\right)}{2}\)

b) \(2+4+6+..+2n\)

\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)

\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)

\(=\left(n+1\right)\left(n-1+1\right)\)

\(=n\left(n+1\right)\)

c) \(1+3+5+...+\left(2n+1\right)\)

\(=\left[\left(2n+1\right)+1\right]\left\{\left[\left(2n-1\right)-1\right]:2+1\right\}:2\)

\(=\left(2n+1+1\right)\left[\left(2n-1-1\right):2+1\right]:2\)

\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)

\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)

\(=\left(n+1\right)\left(n-1+1\right)\)

\(=n\left(n+1\right)\)

15 tháng 8 2023

d) \(1+4+7+10+...+2005\)

\(=\left(2005+1\right)\left[\left(2005-1\right):3+1\right]:2\)

\(=2006\cdot\left(2004:3+1\right):2\)

\(=2006\cdot\left(668+1\right):2\)

\(=1003\cdot669\)

\(=671007\)

e) \(2+5+8+...+2006\)

\(=\left(2006+2\right)\left[\left(2006-2\right):3+1\right]:2\)

\(=2008\cdot\left(2004:3+1\right):2\)

\(=1004\cdot\left(668+1\right)\)

\(=1004\cdot669\)

\(=671676\)

g) \(1+5+9+...+2001\)

\(=\left(2001+1\right)\left[\left(2001-1\right):4+1\right]:2\)

\(=2002\cdot\left(2000:4+1\right):2\)

\(=1001\cdot\left(500+1\right)\)

\(=1001\cdot501\)

\(=501501\)

8 tháng 3 2017

đơn giản thôi

8 tháng 3 2017

\(A=\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{47\cdot48\cdot49}+\frac{2}{48\cdot49\cdot50}\)

\(A=\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{47\cdot48}-\frac{1}{48\cdot49}+\frac{1}{48\cdot49}-\frac{1}{49\cdot50}\)

\(A=\frac{1}{2\cdot3}-\frac{1}{49\cdot50}\)

\(A=\frac{1}{6}-\frac{1}{2450}\)

\(A=\frac{611}{3675}\)

mong giúp đc bn.thk cho mk 

12 tháng 7 2021

\(a,2010:\left(-5\right)+400-1\\ =-402+400-1\\ =-3\\ b,\dfrac{2}{3}+\dfrac{3}{4}.\left(-\dfrac{4}{9}\right)\\ =\dfrac{2}{3}-\dfrac{1}{3}\\ =\dfrac{1}{3}\\ c,\left(1-\dfrac{2}{3}-\dfrac{1}{4}\right)\left(\dfrac{4}{5}-\dfrac{3}{4}\right)^2\\ =\dfrac{1}{12}.\left(\dfrac{1}{20}\right)^2\\ =\dfrac{1}{12}.\dfrac{1}{400}\\ =\dfrac{1}{4800}\)

a) \(2010:\left(-5\right)+400-1=-400+400-1=-1\)

b) \(\dfrac{2}{3}+\dfrac{3}{4}\cdot\dfrac{-4}{9}=\dfrac{2}{3}+\dfrac{-1}{3}=\dfrac{1}{3}\)

c) \(\left(1-\dfrac{2}{3}-\dfrac{1}{4}\right)\cdot\left(\dfrac{4}{5}-\dfrac{3}{4}\right)^2=\dfrac{1}{12}\cdot\dfrac{1}{400}=\dfrac{1}{4800}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(\lim \frac{{2{n^2} + 6n + 1}}{{8{n^2} + 5}} = \lim \frac{{{n^2}\left( {2 + \frac{6}{n} + \frac{1}{{{n^2}}}} \right)}}{{{n^2}\left( {8 + \frac{5}{{{n^2}}}} \right)}} = \lim \frac{{2 + \frac{6}{n} + \frac{1}{n}}}{{8 + \frac{5}{n}}} = \frac{2}{8} = \frac{1}{4}\)

b) \(\lim \frac{{4{n^2} - 3n + 1}}{{ - 3{n^3} + 6{n^2} - 2}} = \lim \frac{{{n^3}\left( {\frac{4}{n} - \frac{3}{{{n^2}}} + \frac{1}{{{n^3}}}} \right)}}{{{n^3}\left( { - 3 + \frac{6}{n} - \frac{2}{{{n^3}}}} \right)}} = \lim \frac{{\frac{4}{n} - \frac{3}{{{n^2}}} + \frac{1}{{{n^3}}}}}{{ - 3 + \frac{6}{n} - \frac{2}{{{n^3}}}}} = \frac{{0 - 0 + 0}}{{ - 3 + 0 - 0}} = 0\).

c) \(\lim \frac{{\sqrt {4{n^2} - n + 3} }}{{8n - 5}} = \lim \frac{{n\sqrt {4 - \frac{1}{n} + \frac{3}{{{n^2}}}} }}{{n\left( {8 - \frac{5}{n}} \right)}} = \frac{{\sqrt {4 - 0 + 0} }}{{8 - 0}} = \frac{2}{8} = \frac{1}{4}\).

d) \(\lim \left( {4 - \frac{{{2^{{\rm{n}} + 1}}}}{{{3^{\rm{n}}}}}} \right) = \lim \left( {4 - 2 \cdot {{\left( {\frac{2}{3}} \right)}^{\rm{n}}}} \right) = 4 - 2.0 = 4\).

e) \(\lim \frac{{{{4.5}^{\rm{n}}} + {2^{{\rm{n}} + 2}}}}{{{{6.5}^{\rm{n}}}}} = \lim \frac{{{{4.5}^{\rm{n}}} + {2^2}{{.2}^{\rm{n}}}}}{{{{6.5}^{\rm{n}}}}} = \lim \frac{{{5^n}.\left[ {4 + 4.{{\left( {\frac{2}{5}} \right)}^{\rm{n}}}} \right]}}{{{{6.5}^n}}} = \lim \frac{{4 + 4.{{\left( {\frac{2}{5}} \right)}^{\rm{n}}}}}{6} = \frac{{4 + 4.0}}{6} = \frac{2}{3}\).

g) \(\lim \frac{{2 + \frac{4}{{{n^3}}}}}{{{6^{\rm{n}}}}} = \lim \left( {2 + \frac{4}{{{{\rm{n}}^3}}}} \right).\lim {\left( {\frac{1}{6}} \right)^{\rm{n}}} = \left( {2 + 0} \right).0 = 0\).

19 tháng 12 2015

nhiều thế 

tick mk lên 70 điểm với

5 tháng 8 2023

\(S=\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+...\dfrac{1}{nx\left(n+1\right)}\)

\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...\dfrac{1}{n}-\dfrac{1}{n+1}\)

\(S=1-\dfrac{1}{n+1}=\dfrac{n}{n+1}\)

\(T=\dfrac{3}{1x2}+\dfrac{3}{2x3}+\dfrac{3}{3x4}+\dfrac{3}{4x5}+...\dfrac{3}{nx\left(n+1\right)}\)

\(T=3x\left[\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+...\dfrac{1}{nx\left(n+1\right)}\right]\)

\(T=3x\left[1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...\dfrac{1}{n}-\dfrac{1}{n+1}\right]\)

\(T=3x\left(1-\dfrac{1}{n+1}\right)=\dfrac{3xn}{n+1}\)