Tính
N=\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{1999\sqrt{1998}+1998\sqrt{1999}}\)
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Có nhận xét sau:
\(\frac{1}{a\sqrt{a+1}+\left(a+1\right)\sqrt{a}}=\frac{1}{\sqrt{a^2+a}\left(\sqrt{a}+\sqrt{a+1}\right)}=\frac{\sqrt{a+1}-\sqrt{a}}{\sqrt{a^2+a}}\)
\(=\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{a+1}}.\)Do đó biểu thức có giá trị bằng: \(\frac{1}{1}-\frac{1}{\sqrt{2}}+..-\frac{1}{\sqrt{1999}}=1-\frac{1}{\sqrt{1999}}.\)
2) Có nhận xét sau:
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a}+\sqrt{a+1}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}=\sqrt{a+1}-\sqrt{a}.\) Thay vào biểu thức ta được biểu thức
có giá trị bằng: \(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{1999}-\sqrt{1998}=\sqrt{1999}-1.\)
Bạn áp dụng \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)với n = 1, 2 , 3 , ... , 1999
\(2\frac{1998}{1999}\)là hỗn số hay \(2.\frac{1998}{1999}\)hả bạn?
\(\sqrt{1.1998}< \frac{1+1998}{2}\)
\(S>\frac{2}{1999}+\frac{2}{1999}+...+\frac{2}{1999}=2.\frac{1998}{1999}\)
Áp dụng \(\frac{1}{\sqrt{a.b}}>\frac{2}{a+b}\) , ta có :
\(S=\frac{1}{\sqrt{1.1998}}+\frac{1}{\sqrt{2.1997}}+...+\frac{1}{\sqrt{k\left(1998-k+1\right)}}+...+\frac{1}{\sqrt{1998.1}}>\)
\(>\frac{2}{1+1998}+\frac{2}{2+1997}+...+\frac{2}{k+1998-k+1}+...+\frac{2}{1998+1}=\)
\(=\frac{2.1998}{1999}\)
Vậy \(S>\frac{2.1998}{1999}\)
Sửa đề : \(S=\frac{1}{\sqrt{1.1998}}+\frac{1}{\sqrt{2.1997}}+...+\frac{1}{\sqrt{k\left(1998-k+1\right)}}+...+\frac{1}{\sqrt{1998.1}}\)
Tổng S có số số hạng là :(1998-1):1+1=1998(số)
Áp dụng bđt cosi vs hai số dương có
\(\sqrt{1.1998}\le\frac{1+1998}{2}=\frac{1999}{2}\)
\(\frac{1}{\sqrt{1.1998}}\ge\frac{2}{1999}\)
Tương tự cx có \(\frac{1}{\sqrt{2.1997}}\ge\frac{2}{1999}\)
..............
\(\frac{1}{\sqrt{k\left(1998-k+1\right)}}\ge\frac{2}{1999}\)
................
\(\frac{1}{\sqrt{1998.1}}\ge\frac{2}{1999}\)
=> \(S\ge\frac{2}{1999}+\frac{2}{1999}+...+\frac{2}{1998}\)
<=> \(S\ge2.\frac{1998}{1999}\)