Câu 25 : Cho S = 1/3 - 2/3 mũ 2 + 3/3 mũ 3 - 4/3 mũ 4 + ... + 99/3 mũ 99 - 100/3 mũ 100 . Số sánh S và 1/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi biểu thức trên là A , ta có :
\(A=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+\dfrac{5}{3^5}-...+\dfrac{99}{3^{99}}+\dfrac{100}{3^{100}}\\ 3A=1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\\ \Rightarrow A+3A=\left(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\right)+\left(1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\right)\\ \Rightarrow4A\cdot3=12A=3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)
từ đó ta được :
\(16A=3-\dfrac{100}{3^{99}}-\dfrac{100}{3^{100}}\\ \Rightarrow A=\dfrac{\dfrac{3-101}{3^{99}}-\dfrac{100}{3^{100}}}{16}\\ \Rightarrow A=\dfrac{3}{16}-\dfrac{\dfrac{101}{3^{99}}-\dfrac{100}{3^{100}}}{16}< \dfrac{3}{16}\)
1) Từ 1 đến 100 có tất cả 100 số số hạng
=> 1+2+3+....+99+100=\(\frac{\left(100+1\right)\cdot100}{2}=5050\)
=> A=5050
2) Từ 1 đến 99 có tất cả: (99-1) : 2 +1=50 số hạng
=> 1+3+5+7+....+97+99=\(\frac{\left(99+1\right)\cdot50}{2}=2500\)
=> B=250
3) làm tương tự
4) S=\(1+2+2^2+2^3+...+2^9\)
\(2S=2+2^2+2^3+2^4+....+2^{10}\)
\(2S-S=2^{10}-1\)
\(\Rightarrow S=2^{10}-1\)
5) làm tương tự
A=1+2+3+...+99+100
Số số hạng của dãyA là:
(100-1):1+1=100(số hạng)
Tổng của dãy A là :
(100+1).100:2=5050
B=1+3+5+...+97+99
Số số hạng của dãy B là:
(99-1):2+1=50 (số hạng)
Tổng của dãy B là:
(99+1).50:2=250
C=2+4+6+...+98+100
Số số hạng của dãy C là:
(100-2):2+1=50(số hạng)
Tổng của dãy C là:
(100+2).50:2=2550
S=1+2+22+23+...+29
2S= 2+22+23+...+29+210
2S-S=1-210
S=1-210
M=1+3+32+33+...+39
3M=3+32+33+...+39+310
3M-M=1-310
2M=1-310
M=(1-310):2
bn ấn vào cái hình có chữ M nằm ngang rồi viết lạ đề đc ko bn viết số mũ bn nhấn vào cái có chữ x rồi có cái hình vuông màu xám ở trên chữ x
\(a,S=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+...+3^{96}-3^{97}+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)\)
\(=\left(1-3+3^2-3^3\right)\left(1+3^4+...+3^{92}+3^{96}\right)\)
\(=-20.\left(1+3^4+...+3^{92}+3^{96}\right)\)là bội của -20
b, \(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(3S=3-3^2+3^3-3^4+...+3^{99}-3^{100}\)
\(3S+S=1-3^{100}\)
\(S=\frac{1-3^{100}}{4}\)
Do S chia hết cho -20 nên S chia hết cho 4 do đó 1-3^100 chia hết cho 4 suy ra 3^100 chia 4 dư 1