Cho $\triangle {ABC}$ và ${AE}$ là tia phân giác của $\widehat{A}$ $({E}$ thuộc ${BC})$. Từ ${E}$ kẻ ${EF}$ // ${AB}$ ($F$ thuộc $AC$). Từ $F$ kẻ $FI$ // $AE$ ($I$ thuộc $BC$). Chứng minh:
1) $\widehat{{BAE}}=\widehat{{EAC}}=\widehat{{AEF}}=\widehat{{EFI}}=\widehat{{IFC}}$.
2) $FI$ là tia phân giác của $\widehat{{EFC}}$.
Con không biết làm bài này đâu cô ơi
1) \widehat{{BAE}}=\widehat{{EAC}}BAE=EAC (giả thiết). (1)
Vì {AB}AB // {EF}EF nên \widehat{{BAE}}=\widehat{{AEF}}BAE=AEF (hai góc so le trong). (2)
Vì AEAE // FIFI nên \widehat{EAC}=\widehat{IFC}EAC=IFC (hai góc đồng vị). (3)
Vì {AE}AE // {FI}FI nên \widehat{{AEF}}=\widehat{{EFI}}AEF=EFI (hai góc so le trong). (4)
Từ (1), (2), (3), (4) suy ra: \widehat{{BAE}}=\widehat{{EAC}}=\widehat{{AEF}}=\widehat{{IFC}}=\widehat{{EFI}}BAE=EAC=AEF=IFC=EFI.
2) Từ chứng minh trên, ta có: \widehat{{EFI}}=\widehat{{IFC}}EFI=IFC mà {FI}FI là tia nằm giữa hai tia {FE}FE và {FC}FC.
Vậy {FI}FI là tia phân giác của \widehat{{EFC}}EFC.