K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2016

Do: (x + 1)2 \(\ge\)0   => -(x + 1)2 \(\le\)0   => 13 + [-(x + 1)2] = 13 - (x + 1)2\(\le\)13

Đẳng thức xảy ra khi: (x + 1)2 = 0   => x = -1

Vậy giá trị lớn nhất của 13 - (x + 1)2 là 13 khi x = -1

16 tháng 12 2015

GTNN là -2009 <=> x = 2; y = 3

C không có GTLN vì x và y càng lớn hoặc càng nhỏ thì -|x - 2| và -|y - 3| càng nhỏ

16 tháng 12 2015

 

Vì  - / x-2/ </0

và - / y -3/ </ 0

=> C = -/ x-2/ - / y -3/ - 2009 </ 0+0-2009 = - 2009

Max C = -2009 khi  x -2 =0 => x =2 và y -3 =0 => y =3

 

1 tháng 11 2017

GTLN :

\(A=\frac{x+1}{x^2+x+1}=\frac{\left(x^2+x+1\right)-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\)

Vì \(\frac{x^2}{x^2+x+1}=\frac{x^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\forall x\) nên \(A=1-\frac{x^2}{x^2+x+1}\le1\forall x\) có GTLN là 1

GTNN : 

\(A=\frac{x+1}{x^2+x+1}=\frac{-\frac{1}{3}x^2-\frac{1}{3}x-\frac{1}{3}+\frac{1}{3}x^2+\frac{4}{3}x+\frac{4}{3}}{x^2+x+1}=\frac{-\frac{1}{3}\left(x^2+x+1\right)+\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}\)

\(=-\frac{1}{3}+\frac{\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}=-\frac{1}{3}+\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\ge-\frac{1}{3}\) có GTNN là \(-\frac{1}{3}\)

1 tháng 2 2018

Nhỏ nhất:

D có giá trị nhỏ nhất khi: (x + 5)2 = 0 và (2y - 6)2 = 0

(x + 5)2 = 0

(x + 5)= 02

=> x + 5 = 0

         x   = 0 - 5

         x   = -5

(2y - 6)2 = 0

(2y - 6)2 = 02

=> 2y - 6 = 0

        2y   = 0 + 6

         2y  = 6

            y = 6 : 2

            y = 3

Ta có: D = 0 + 0  + 1 = 1

Lớn nhất:(không có giá trị lớn nhất)

1 tháng 2 2018

GIÚP MÌNH VỚI

LÀM ƠN

16 tháng 12 2019

Ai trả lời cho tôi đi,ai đúng cho 50k nha nhanh lên

16 tháng 12 2019

vừa tôi ấn lộn xin lỗi ha