Rút gọn biểu thức: A=\(\dfrac{12^{10}.35+2^{10}.65+6^2.12^6.15^2}{2^8.10^4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{\left(5^2.6^{11}.16^2+6^2.12^6.15^2\right).10}{2.6^{12}.10^4-81^2.960^3}\)
\(A=\frac{\left(5^2.2^{11}.3^{11}.2^8+2^2.3^2.3^3.2^{12}.3^2.5^2\right).10}{2.2^{12}.3^{12}.2^4.5^4-9^4.2^{18}.3^3.5^3}\)
\(A=\frac{5^2.2^{11}.3^{11}.2^8.2.5+2^2.3^2.2^{12}.3^25^2.2.5}{2^{15}.\left(2^2.3^{12}.5^4-9^4.2^3.3^3.5^3\right)}\)
\(A=\frac{2^{15}\left(5^3.2^5.3^{11}+3^4.5^3\right)}{2^{15}.\left(2^2.3^{12}.5^4-9^4.2^3.3^3.5^3\right)}\)
\(A=\frac{5^3.2^5.3^{11}+3^4.5^3}{2^2.3^{12}.5^4-9^4.2^3.3^3.5^3}\)
\(A=\frac{5^3\left(2^5.3^{11}+3^4\right)}{5^3\left(2^2.3^{12}.5-9^4.2^3.3^3\right)}\)\(A=\frac{2^5.3^{11}+3^4}{2^2.3^{12}.5-9^4.2^3.3^3}\)
\(A=\frac{3^4.\left(2^5.3^8.5+1\right)}{3^4\left(2^2.3^8.5-3^4.2^3.3^3\right)}\)
\(A=\frac{2^5.3^8.5+1}{2^2.3^8.5-3^4.2^3.3^3}\)
Cậu phân tích từ từ
http://olm.vn/hoi-dap/question/425436.html
\(\frac{5^2.6^{11}.16^2+6^2.12^6.15^2}{2.6^{12}.10^4-81^2.960^3}=\frac{5^2.6^{11}.6^2.6^2.6^6.2^6.3^2.5^2}{2.2^{12}.3^{12}2^4.5^4-3^8.2^{15}.3^3}=\frac{5^6.6^{21}.2^8.3^2}{2^{17}.3^{12}.5^4-3^{11}.2^{15}}=\frac{5^6.3^{23}.2^{29}}{3^{11}.2^{15}.\left(2^2.3.5^4-1\right)}=\frac{5^6.3^{13}.2^{14}}{2^2.3.5^4-1}\)
Ta có:
\(\frac{5^2.6^{11}.16^6.12^6.15^2}{2.6^{12}.10^4-81^2.960^3}\Leftrightarrow\frac{5^2.6^{11}.16^6.12^2.15^2}{2.6^{11}.6.10^4-81^2.960^3}\)
\(\Leftrightarrow\frac{5^2.16^6.12^2.15}{2.6.10^4-81^2.960^3}\Leftrightarrow\frac{5^2.16^2.12.12.15}{\left(2.6\right).10^4-81^2.960^3}\)
\(\Leftrightarrow\frac{5^2.16^2.12.12.15}{12.10^4-81^2.960^3}\Leftrightarrow\frac{5^2.16^2.12.15}{10^4-81^2.960}\)
\(\Leftrightarrow\frac{5^2.16^2.12.3.5}{10^4-3^8.960}\Leftrightarrow\frac{5^2.16^2.12.3.5}{10^4-3^7.3.960}\Leftrightarrow\frac{5^2.16^2.12.5}{10^4-3^7.960}\)
Ps: Không chắc chắn đúng! Thầy cũng cho mình làm bài này hôm nay. Mình cũng làm cách tương tự như trên nhưng chưa biết đúng hay sai! Bạn thông cảm
làm cách trình bày ra nhé biết kết quả là \(\frac{388}{7199}\)
Ta có: \(\frac{5^2.6^{11}.16^2+6^2.12^6.15^2}{2.6^{12}.10^4-81^2.960^3}\)
\(=\frac{5^2.2^{11}.3^{11}.2^8+2^2.3^2.3^6.2^{12}.5^2.3^5}{2.2^{12}.3^{12}.2^4.5^4-3^8.2^{18}.3^3.5^3}\)
\(=\frac{5^2.2^{19}.3^{11}+3^{13}.2^{14}.5^2}{2^{17}.3^{12}.5^4-2^{18}.3^{11}.5^3}\)
\(=\frac{\left(5^2.2^{14}.3^{11}\right)\left(2^5+3^2\right)}{\left(2^{17}.3^{11}.5^3\right)\left(3.5-2\right)}\)
\(=\frac{\left(2^5+3^2\right)}{\left(2^3.5\right)\left(3.5-2\right)}\)
\(=\frac{32+9}{40.13}\)
\(=\frac{41}{520}\)
$\frac{5^2.6^{11}.16^2+6^2.12^6.15^2}{2.6^{12}.10^4-81^2960^3}$52.611.162+62.126.1522.612.104−8129603= \(y=\frac{1}{x^2+\sqrt{x}}\)
\(y=\frac{1}{x^2+\sqrt{x}}\)
\(A=\dfrac{2^{20}\cdot3^{10}\cdot35+2^{10}\cdot65+2^2\cdot3^2\cdot2^{12}\cdot3^6\cdot3^2\cdot5^2}{2^{12}\cdot5^4}\)
\(=\dfrac{2^{10}\left(2^{10}\cdot3^{10}\cdot35+65+2^4\cdot3^{10}\cdot5^2\right)}{2^{12}\cdot5^4}\)
\(=\dfrac{1}{4}\cdot\dfrac{2^4\cdot3^{10}\cdot5\cdot\left(2^6\cdot7+5\right)+65}{5^4}\)
\(=\dfrac{1}{4}\cdot\dfrac{2^4\cdot3^{11}\cdot5\cdot151+65}{5^4}\)
\(=\dfrac{1}{4}\cdot\dfrac{2^4\cdot3^{11}\cdot151+13}{5^3}=\dfrac{2^4\cdot3^{11}\cdot151+13}{500}\)