K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)

Cách 1 là:

Xét 🔺AHB vuông tại H1 và 🔺AHB vuông tại H2 ,ta có: 

          AC=AB(vì là tam giác cân)

          góc B= góc C(vì là tam giác cân)

          =>🔺AHC=🔺AHC cạnh huyền-góc nhọn)

        => H là trung điểm của BC

Cách 2:

Xét 🔺AHC vuông tại H1 và 🔺 AHB vuông tại H2 ,ta có: 

           AB=AC(vì là tam giác cân)

            AH là cạnh chung

      => 🔺AHC=🔺 AHB ( cạnh huyền góc vuông)

      => H là trung điểm của BC

b) 

 

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: Xét ΔABC có

H là trung điểm của CB

HD//AB

=>D là trung điểm của AC

ΔAHC vuông tại H có HD là trung tuyến

nên DH=DC

=>ΔDHC cân tại D

=>DM vuông góc HC

=>DM//AH

a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có 

AB=AC(ΔBAC cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)

Suy ra: BH=HC(hai cạnh tương ứng)

1 tháng 3 2022

GIÚP MÌNH VỚI

hihihihihihi

a: Xét ΔAHB và ΔAHC có

AH chung

HB=HC

AB=AC

Do đó: ΔAHB=ΔAHC

Ta có: ΔABC cân tại A

mà AH là đường trung tuyến

nên AH là đường cao

b: Xét tứ giác ABIC có

H là trung điểm của BC

H là trung điểm của AI

Do đó: ABIC là hình bình hành

Suy ra: IB=AC

16 tháng 3 2023

Bn xem lại câu d nhé 

`a)`

Có `Delta ABC` cân tại `A`

`=>hat(B)=hat(C)=(180^0-hat(BAC))/2`

hay `hat(B)=hat(C)=(180^0-50^0)/2`

`=>hat(B)=hat(C)=130^0/2=65^0`

`b)`

Có `H` là tđ `BC(GT)=>BH=HC`

Xét `Delta ABH` và `Delta ACH` có :

`{:(AB=AC(GT)),(AH-chung),(BH=CH(cmt)):}}`

`=>Delta ABH=Delta ACH(c.c.c)(đpcm)`

`c)`

Có `AB=AC=>A in` trung trực của `BC`(1)

`BH=CH=>H in` trung trực của `BC`(2)

Từ (1) và (2)`=>AH` là trung trực của `BC`

`=>AH⊥BC(đpcm)`

Câu a bạn có chép sai ko vậy?

Giải

b)Xét tam giác BAH và CAH có:

AB=AC(gt)

góc B =góc C(gt)

AH chung

\(\Rightarrow\)tam giác BAH =CAH (c.g.c)

\(\Rightarrow\)góc BAH=CAH (2 góc t/ư)

Mặt khác AH nằm giữa AB và AC ,chia góc A thành 2 góc bằng nhau 

Mà H là trung điểm BC

\(\Rightarrow\)AH là tia phân giác góc A và vuông góc BC

 

a: \(AB=\sqrt{6^2+8^2}=10\left(cm\right)\)

BH<AH<AB

=>góc HAB<góc HBA<góc AHB

b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

c: góc KAH=góc HAC

góc KHA=góc HAC

=>góc KAH=góc KHA

=>ΔAKH cân tại K

Xét ΔABC có

H là trung điểm của BC

HK//AC

=>K là trung điểm của AB

27 tháng 1 2022

Bạn tự vẽ hình.

a, Dễ dàng chứng minh \(\Delta AHB=\Delta AHC\left(ch.gn\right)\)hoặc \(\Delta AHB=\Delta AHC\left(ch.cgv\right)\)

b, \(\Delta ABC\) cân tại A, \(AH\perp BC\)

=> AH là đường trung tuyến

=> \(BH=HC=\frac{BC}{2}=\frac{6}{2}=3cm\)

Áp dụng định lí pitago vào \(\Delta ABH\) vuông tại H

Từ đó, tính được \(AH=\sqrt{5^2-3^2}=4cm\)