Tìm giá trị số c và d
1. cd6 + cd = 501
2. cd1 - cd = 469
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cần thêm điều kiện a,b,c,d là các số không âm.
Không mất tính tổng quát, ta giả sử \(a\ge b\ge c\ge d\ge0\)
thì : \(S=ab+bc+cd\le ab+ac+ad=a\left(b+c+d\right)=a\left(1-a\right)\)\(=-a^2+a=-\left(a^2-a+\frac{1}{4}\right)+\frac{1}{4}=-\left(a-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Vậy max S = 1/4 khi , chẳng hạn a = b = 1/2 , c = d =0
Bài 1: Ta có:
\(M=\frac{ad}{abcd+abd+ad+d}+\frac{bad}{bcd.ad+bc.ad+bad+ad}+\frac{c.abd}{cda.abd+cd.abd+cabd+abd}+\frac{d}{dab+da+d+1}\)
\(=\frac{ad}{1+abd+ad+d}+\frac{bad}{d+1+bad+ad}+\frac{1}{ad+d+1+abd}+\frac{d}{dab+da+d+1}\)
$=\frac{ad+abd+1+d}{ad+abd+1+d}=1$
Bài 2:
Vì $a,b,c,d\in [0;1]$ nên
\(N\leq \frac{a}{abcd+1}+\frac{b}{abcd+1}+\frac{c}{abcd+1}+\frac{d}{abcd+1}=\frac{a+b+c+d}{abcd+1}\)
Ta cũng có:
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$
Tương tự:
$c+d\leq cd+1$
$(ab-1)(cd-1)\geq 0\Rightarrow ab+cd\leq abcd+1$
Cộng 3 BĐT trên lại và thu gọn thì $a+b+c+d\leq abcd+3$
$\Rightarrow N\leq \frac{abcd+3}{abcd+1}=\frac{3(abcd+1)-2abcd}{abcd+1}$
$=3-\frac{2abcd}{abcd+1}\leq 3$
Vậy $N_{\max}=3$
cd = 45
cd = 52