K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2022

cd = 45

cd = 52

18 tháng 2 2019

6 tháng 4 2019

Chọn đáp án A

.

.

20 tháng 8 2016

Cần thêm điều kiện a,b,c,d là các số không âm.

Không mất tính tổng quát, ta giả sử \(a\ge b\ge c\ge d\ge0\)

thì : \(S=ab+bc+cd\le ab+ac+ad=a\left(b+c+d\right)=a\left(1-a\right)\)\(=-a^2+a=-\left(a^2-a+\frac{1}{4}\right)+\frac{1}{4}=-\left(a-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Vậy max S = 1/4 khi , chẳng hạn a = b = 1/2 , c = d =0 

AH
Akai Haruma
Giáo viên
22 tháng 1 2022

Bài 1: Ta có:

\(M=\frac{ad}{abcd+abd+ad+d}+\frac{bad}{bcd.ad+bc.ad+bad+ad}+\frac{c.abd}{cda.abd+cd.abd+cabd+abd}+\frac{d}{dab+da+d+1}\)

\(=\frac{ad}{1+abd+ad+d}+\frac{bad}{d+1+bad+ad}+\frac{1}{ad+d+1+abd}+\frac{d}{dab+da+d+1}\)

$=\frac{ad+abd+1+d}{ad+abd+1+d}=1$

AH
Akai Haruma
Giáo viên
22 tháng 1 2022

Bài 2:

Vì $a,b,c,d\in [0;1]$ nên

\(N\leq \frac{a}{abcd+1}+\frac{b}{abcd+1}+\frac{c}{abcd+1}+\frac{d}{abcd+1}=\frac{a+b+c+d}{abcd+1}\)

Ta cũng có:
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$

Tương tự:

$c+d\leq cd+1$

$(ab-1)(cd-1)\geq 0\Rightarrow ab+cd\leq abcd+1$

Cộng 3 BĐT trên lại và thu gọn thì $a+b+c+d\leq abcd+3$

$\Rightarrow N\leq \frac{abcd+3}{abcd+1}=\frac{3(abcd+1)-2abcd}{abcd+1}$

$=3-\frac{2abcd}{abcd+1}\leq 3$

Vậy $N_{\max}=3$